Review Creep of ceramics

Part1 Mechanical characteristics

W. ROGER CANNON

Department of Ceramics, Rutgers University, Piscataway, New Jersey 08854, USA

TERENCE G. LANGDON

Departments of Materials Science and Mechanical Engineering, University of Southern California, Los Angeles, California 90089–1453, USA

Many experiments have been undertaken to investigate the creep behaviour of ceramics. This review tabulates the available data in terms of the shapes of the creep curves and the dependence of the steady-state creep rate on stress, grain size and temperature. Numerous theoretical mechanisms are available for intragranular and intergranular deformation processes, and the predictions of these mechanisms are summarized for comparison with the experimental data.

1. Introduction

Considerable interest has developed in recent years in the slow deformation, or creep, which occurs in crystalline materials at elevated temperatures under the action of an applied stress. This interest has arisen because of the current need for a wide range of structural materials for various engineering applications at high temperatures. However, from an historical point of view, scientific interest in creep dates back to the early experiments of Phillips [1], conducted almost 80 years ago, on the "slow stretch" of India rubber, glass, and metal wires.

The creep of metals received much impetus from the classic (and still widely cited) work of Andrade [2, 3] early in this century. As a result, a considerable volume of creep data has been assembled for many metallic systems, and the development of these data has been especially rapid within the last 30 years. Similarly, the creep of rocks in the geological domain was stimulated by the classic experiments conducted by Griggs [4, 5] in the 1930s.

Surprisingly, there appears to be no single classic paper which marks the onset of detailed studies of the creep of those non-metallic materials of primary interest to ceramicists. Despite very early work on the orientation of preferred slip systems in some non-metallic single crystals (for example, the experiments of Reusch [6] and Mügge [7] on NaCl single crystals in the 19th century), the creep or high-temperature mechanical properties of ceramics started rather modestly with investigations in the mid-1950s by Wachtman and Maxwell [8] on Al₂O₃ single crystals, Stavrolakis and Norton [9] and Coble and Kingery [10] on polycrystalline Al₂O₃, and Christy [11, 12] on alkali halides. It is also surprising to note that, despite widespread reports throughout the 1950s of power-law creep with a stress exponent greater than 1 for a wide range of polycrystalline metals, similar observations were first reported for polycrystalline ceramic materials only within the last 15 years [13, 14].

The slow development of detailed investigations of creep in ceramics is directly attributable to a combination of two unfavourable physical properties, an inherent brittleness and a susceptibility to thermal shock, which suggested that ceramics would be of little use in structural applications at high temperatures. In recent years, however, this aversion has been partially overcome by the realization that many ceramic materials possess unique combinations of properties, such as a high strength and a resistance to oxidation. Thus, there has been a very rapid expansion in experimental studies of the creep of ceramics, so that there are now several hundreds of publications on ceramic creep in the scientific literature.

This review was motivated by the realization that the various reports of the creep of ceramics are scattered through a large number of publications and that no attempt has been made to take an overview of the available data. The overall scope of the review is discussed in detail in the following section.

2. Scope of the review

The objectives of this review are two-fold. First, to bring together and to tabulate the various reports of the creep of ceramics at present available in the scientific literature. Second, to analyse these data with respect to possible deformation mechanisms, to examine bodies of information on a single material for consistent trends, and to make a direct comparison with the very extensive data reported for metals.

For completeness, it should be noted that some limited reviews of the creep of ceramics are now available. Gittus [15] and Poirier [16] included chapters on the creep of non-metals in their books on high-temperature deformation, Burton [17] examined the role of ceramics in a book on diffusion creep, and there are sections on creep in the books on ceramics by Kingery et al. [18] and Davidge [19]. There are review articles, dealing primarily with the basic mechanical properties, by Evans and Langdon [20] and Wilshire [21]. There is also a detailed review by Bretheau et al. [22] dealing exclusively with binary and ternary oxides, a review of creep in SiC, Sialon and Si₃N₄ by Thümmler and Grathwohl [23], and an early review of the creep of ceramic nuclear fuels by Seltzer et al. [24]. Finally, a review of steady-state creep in single-phase crystalline materials by Takeuchi and Argon [25] includes some limited data on non-metallic systems although it is devoted primarily to metals, and Kirby and Raleigh [26] included several ceramics in their review of flow in the mantle.

In order to keep this review within tractable dimensions, it was necessary to divide it into two parts. In the present report (Part 1), there is a compilation in table form of the various creep data published to date and a brief discussion of the

*The latter two reviews also cover the creep of halite (NaCl).

mechanisms of creep. In a subsequent report (Part 2), there is an analysis of the data for selected polycrystalline materials where several sets of results are available and a direct comparison with the general trends in metals.

3. Compilation of the creep data

The creep data are assembled in Tables AI to AIII of the Appendix; for convenience, the references associated with these tables are numbered separately from the references contained in the body of the paper.

Tables AI to AIII list the experimental reports of the creep of ceramic materials divided into the three separate sections of single crystals (Table AI), bicrystals (Table AII) and polycrystalline materials (Table AIII). The materials are listed alphabetically by chemical name within each table, except for graphite in Table AIII.

Some selectivity was necessary in order to decide on the materials included in the tabulation. In general, the tables incorporate all materials of interest in the ceramic scientific community, with the exception that no attempt was made to include creep details for the commercial refractory brick materials. Graphite is included in Table AIII: it was also included in the review by Gittus [15]. However, non-metallic materials of interest primarily to geologists were specifically excluded (e.g. calcite, olivine, quartz and the orthopyroxenes): these materials are contained in the reviews by Carter [27] and Nicolas and Poirier [28].*

Within each table, the references are listed chronologically under each material. In Table AI, the second column shows the total metallic impurity or dopant (in ppm), the third column gives the orientation of the single crystals with respect to the stress axis, the fourth and fifth columns give the testing temperature and applied stress, and the sixth and seventh columns give the test technique and atmosphere. For the testing technique, creep tests are designated by the letters B (bending), C (compression) and T (tension): many tests have been conducted also at high temperatures using a constant strain rate (CSR), and this procedure is so designated. There are also occasional references in the tables to other procedures such as a constant loading rate (CLR), an indentation technique and stress relaxation. The three columns on the right in Table AI give details of the experimental results. Specifically,

they list the type of creep curve (or stress-strain curve), the stress exponent, n, and the activation energy for the flow process, Q: the characteristics of the creep (or stress-strain) curves are discussed in detail in the following section. Tables AII and AIII are essentially similar to Table AI, except that they provide alternative information such as boundary misorientations for bi-crystals (Table AII), and the density (as a percentage of theoretical), grain size and grain size exponent, p, for polycrystalline materials (Table AIII).

It should be noted also that the ranges of stress, temperature and grain size quoted in Tables AI to AIII serve only as a guide to the testing conditions, and they do not mean necessarily that experiments were conducted over the entire ranges for each variable: the original references should be consulted to obtain the exact combinations of the various experimental parameters.

It is necessary to point out that, although creep testing generally refers to experimental conditions of constant stress or load, tests at constant strain rate were included in the tabulation *provided* they were conducted at creep temperatures of the order of $\sim 0.5T_{\rm m}$ or above, where $T_{\rm m}$ is the absolute melting point of the material. Thus, the criterion for creep was based on the test temperature rather than the mode of testing, and the very extensive experiments performed on many non-metallic materials at low homologous temperatures are therefore necessarily excluded from Tables AI to AIII.

4. The shape of the creep or stress—strain curves

The nature of the creep or stress-strain curves is indicated in Tables AI and AIII according to the schematic illustrations given in Fig. 1. Four creep curves are shown as A to D, plotting strain, ϵ , against time, t, at constant stress, σ (or constant load). Curve A shows the normal three-stage curve usually observed in metals, consisting of an

Figure 1 Schematic illustrations of the various curves arising from tests conducted under constant stress (A to D) and constant strain rate (E to G). The experimental curves are designated according to these types in Tables AI to AIII.

instantaneous strain, a primary stage in which the creep rate decreases with time, a steady-state or secondary stage of constant strain rate, and a tertiary stage of increasing creep rate to the point of fracture. Curve B lacks the primary stage and shows only two-stage behaviour, and curve C contains an inverted primary stage. Curve D contains a sigmoidal primary before steady-state flow: this type of creep curve is often observed in single crystals containing a very low dislocation density, and the initial primary is then due to the multiplication of dislocations. Three stress-strain curves are shown as E to G, where the instantaneous stress, σ , is plotted against the total strain, ϵ , for tests conducted at true (or nominal) constant strain rate, $\dot{\epsilon}$. Curve E shows the presence of a yield drop and subsequent hardening, curve F shows little or no hardening after the yield point, and curve G shows extensive hardening after yield.

Some difficulty was occasionally experienced in attempting to match the various experimental curves with those depicted schematically in Fig. 1. In general, there tended to be more variations in the appearance of the stress-strain curves at constant strain rate so that, although the general features in each set of experiments match the designations given in Tables AI and AIII, the precise shapes of the curves may differ considerably between different materials and testing conditions. For the creep tests, an apparent primary stage may occasionally result from concurrent grain growth, or the steady-state condition may not be fully achieved. Nevertheless, the creep curves were classified, according to the available information, in terms of types A, B, C or D in Fig. 1. In addition, some tests were conducted at a constant loading rate, where the stress increases linearly with time: where possible, these tests were characterized in terms of curves E to G.

Although it is difficult to correlate directly the curves for constant stress and constant strain rate shown in Fig. 1, some basic features may arise from similar mechanisms. Thus, the primary stage of curve A is due to the hardening arising from substructure development, and the hardening in curves E and G also relate to substructural changes. The early stages of curves C and D, where the primary is inverted, is due to dislocation multiplication; similarly, the upper yield point in curve E may, in some crystals, arise from a multiplication process. In general, constant strain rate tests are easier (and quicker) to perform, but detailed

creep studies strictly require tests at constant stress (or load).

5. The dependence of steady-state creep rate on stress, temperature and grain size

Most mechanisms of high-temperature creep predict a steady-state creep rate, \dot{e} , which is given by

$$\dot{\epsilon} = \frac{ADGb}{kT} \left(\frac{b}{d}\right)^{p} \left(\frac{\sigma}{G}\right)^{n}$$
(1)

where D is the appropriate diffusion coefficient, G is the shear modulus, b is the Burger's vector, k is Boltzmann's constant, T is the absolute temperature, d is the grain size, p is the exponent of the inverse grain size, n is the stress exponent, and A is a dimensionless constant. The diffusion coefficient, D, is given by

$$D = D_{o} \exp\left(-\frac{Q}{RT}\right), \qquad (2)$$

where D_o is a frequency factor, Q is the activation energy for the diffusion process, and R is the gas constant (8.31 J mol⁻¹ K⁻¹).

It follows from Equations 1 and 2 that each creep mechanism is uniquely specified by the values of the three constants, A, p and n, and by the activation energy, Q. In general, however, the experimental values of A depend rather critically on the precise values of p, n and Q, so that the dimensionless constant A is usually of little value in determining the precise deformation mechanism. Accordingly, Table AI shows the values obtained experimentally for n and Q in the tests on single crystals, and Table AIII shows the values is discussed in more detail in the following section.

A word of caution is necessary concerning the experimental values of the activation energy, Q, shown in Tables AI and AIII. In most experiments, Q was determined from the slope (= -Q/2.3R) of a plot of logarithmic \dot{e} against 1/T. In practice, this represents the *apparent* activation energy because it fails to include either the variation in shear modulus with temperature or the term 1/kT contained in Equation 1. The *true* activation energy is obtained from a plot of logarithmic $\dot{e}G^{n-1}T$ against 1/T, and this is significantly lower than the apparent activation energy when n is large. The difference between the true and apparent activation energies tends to be rather minor when $n \approx 1$ to 2.

6. Interpretation of the creep data

6.1. General observations

Inspection of Tables AI and AIII shows that the body of literature describing the creep behaviour of single crystals is significantly smaller than the available data for polycrystals. This difference arises because single crystal studies have tended to concentrate primarily either on a determination of the critical resolved shear stress as a function of temperature for a selected slip system or on a detailed investigation of the dislocation configurations and interactions. Only a small portion of the published data on single crystals includes details of the variation of deformation with time, stress and/or temperature: it is the latter studies which are included in Table AI.

In addition, it is often difficult to interpret the creep data for single crystals in terms of the mechanisms developed for polycrystals because much of the single crystal deformation takes place by unrestricted glide on the primary slip system. A more direct correlation with polycrystalline behaviour may be obtained by orienting the single crystals so that slip occurs on systems experiencing a high Peierls force: for example, experiments on sapphire single crystals oriented perpendicular to the basal plane with an [0001] stress axis [29].

Most of the bicrystal studies have been directed towards an examination of grain boundary sliding. It is clear from these tests that the situation is complex, and both the total misorientation across the boundary and the impingement of lattice dislocations on to the boundary appear to be important factors in determining the magnitude of the sliding offsets. The precise relationship between sliding on the long unconstrained boundary of a bicrystal and sliding on the relatively shorter boundaries contained in a polycrystalline matrix remains an unresolved problem.

The rate-controlling creep mechanism in a polycrystal is usually determined by reference to the experimental values of n, p and Q. If the dominant mechanism is intragranular, there is no dependence on the presence of grain boundaries so that p = 0; whereas if the deformation process involves the grain boundaries, the value of p is in the range from 1 to 3. These two types of process, termed lattice and boundary mechanisms [30], respectively, are considered in the following sections.

6.2. Lattice mechanisms of creep

Lattice mechanisms are based on the intragranular motion of dislocations and, by definition, they require p = 0.

Many theoretical mechanisms have been developed for intragranular deformation and these are summarized in Table I in terms of the predicted values for n and Q, where Q_1 , Q_{ci} and Q_p are the activation energies for lattice selfdiffusion, chemical interdiffusion of solute atoms and pipe diffusion along the dislocation cores, respectively. A detailed description of the principles of these various mechanisms is beyond the scope of this paper, but several of the mechanisms were outlined in an earlier review [20] and a complete description of each model is given in the various references cited in Table I.*

Unfortunately, inspection of Table I shows that many of the theoretical models lead to identical predictions in terms of n and Q. In general, the predicted value of n is within the rather limited range from 3 to 4.5 when the activation energy is equal to the value for lattice self-diffusion, Q_1 , although it is possible to obtain higher values of n at lower temperatures by invoking pipe diffusion with an activation energy of Q_p ($\simeq 0.6Q_1$). It should be noted also that, with the exception only of the model of Chang [35] based on transmission electron microscope observations of MgO, all of the theories were developed originally for metals. However, Evans and Knowles [48] specifically tested the predictions of their theory for climb of dislocation links [46] with experimental data from four ceramics (Al_2O_3 , LiF, MgO and UO₂).

A review of the polycrystalline data in Table AIII shows that many of the results lead to stress exponents close to 1 and there is a relatively small proportion of the data giving $n \simeq 3-5$. This contrasts with metals where Newtonian viscous flow (with n = 1) is a rather limited phenomenon and most investigations give high values of n (see, for example, the detailed review of creep of metals by Bird *et al.* [49]). An important reason for this difference is that ceramics are often tested at lower normalized stresses to avoid problems of cracking.

Close inspection of the tabulated data shows that many of the results with n > 2 tend to group around either $n \simeq 3$ or $n \simeq 5$. This, too, is similar to the metals data, although in metallic systems

^{*}Some models which do not lead to singular and well-defined values of n are not included in Table I: for example, the theory of Poirier [47] for the unblocking of dislocation loops by climb and cross-slip.

FABLE I Values of n and	d Q for lattice	mechanisms wi	th p = 0
--------------------------------	-------------------	---------------	----------

Mechanism	n	Q	Reference
Dislocation glide and climb,	4.5	<i>Q</i> 1	Weertman [31–33]
Dislocation glide and climb, controlled by glide	3	Q_{ci}	Weertman [34]
Dissolution of dislocation loops	4	<i>O</i> 1	Chang [35]
Dislocation climb from	3	\tilde{o}_1)*	
Bardeen-Herring sources	5	0 _n i	Nabarro [36]
Non-conservative motion of jogged screw dislocations	3†	$\tilde{\mathcal{Q}}_1^{p_f}$	Barrett and Nix [38]
Nabarro-Herring creep at subgrain boundaries	3	Q_1	Friedel [39]
Climb of dislocations in two- dimensional subgrain boundaries	3	Q_1	Ivanov and Yanushkevich [40]
Climb of dislocations in subgrain boundaries of finite width	4	Q_1	Blum [41]
Recovery creep assuming slip distance is independent of mesh size	4	Q_1	Lagneborg [42, 43]
Recovery creep including distribution of dislocation link lengths	3	Q_1	Öström and Lagneborg [44]
Network coarsening by jog-controlled climb	3	Q_1	Gittus [45]
Climb of dislocation links within a three-dimensional network:			
(i) Average slip distance equals	3	$(Q_1)^*$	
mesh spacing of network	5	$\tilde{Q}_{\rm p}$	Evans and Knowles [46]
(ii) Slip distance is independent	4	Q_1^*	
of mesh size	6	$Q_{\mathbf{p}}$	Evans and Knowles [46]

*These theories lead to a stress exponent of n and an activation energy for lattice self-diffusion, Q_1 , at high temperatures, and a stress exponent of (n + 2) and an activation energy for pipe diffusion, Q_p , at low temperatures. A similar transition to (n + 2) and Q_p is also believed to occur in dislocation glide and climb controlled by climb [37]. [†]The original theory of Barrett and Nix [38] gives n = 4 by putting the density of mobile screw dislocations, ρ_{ms} , proportional to σ^3 . The value of n = 3 is obtained by making the more reasonable assumption that ρ_{ms} is proportional to σ^2 .

it is now reasonably established that $n \simeq 5$ is the typical behaviour of a wide range of pure metals and $n \simeq 3$ is associated with some solid solution alloying: these two types of behaviour are termed class M (Metal type) and class A (Alloy type), respectively [50]. The situation is less well-defined in ceramics where a larger proportion of materials exhibit $n \simeq 3$ and there are often problems in interpreting the precise role of impurities. A detailed evaluation of the creep behaviour of several selected polycrystalline ceramics is given in Part 2.

6.3. Boundary mechanisms of creep

Boundary mechanisms are based on deformation processes associated with the presence of grain boundaries so that, by definition, $p \ge 1$.

Table II lists several boundary mechanisms in terms of the predicted values for n, p and Q, where $Q_{\rm ph}$ is the activation energy associated with the presence of a grain boundary liquid phase.

A consequence of all boundary mechanisms is that adjacent grains become displaced with respect to each other, with the displacement occurring at, or close to, the grain boundary plane. It is convenient to make a distinction between those boundary mechanisms in which the displacement, or grain boundary sliding, occurs in association with grain elongation in the tensile direction and those mechanisms in which the displacement is not associated with an elongation of the grains [62]: these two processes are generally termed Lifshitz [63] sliding and Rachlinger [64] sliding, respectively.

Lifshitz sliding requires full accommodation by either vacancy flow [63] or intragranular flow extending completely across the grains [65]. For the former accommodation, vacancies diffuse between grain boundaries where the vacancy concentration is either higher or lower than the equilibrium concentration, respectively, and, as indicated in Table II, this process gives n = 1 but

TABLE II Values of n, p and Q for boundary mechanisms

Mechanism	n	p	Q	Reference
(i) Lifshitz sliding				* ³
Sliding accommodated by diffusion:				
(a) Nabarro-Herring creep	1	2*	Q_1	Nabarro [51], Herring [52]
(b) Coble creep	1	3	$Q_{\rm gb}$	Coble [56]
Sliding accommodated by	1	1	Q_{gb}	Crossman and Ashby [57]
intragranular flow across the grains			U	•
(ii) Rachinger sliding				
With a continuous glassy phase	1	1	$Q_{\rm ph}$	Orowan [58]
at the boundary			-	
Without a glassy phase:				
(a) sliding accommodated by	2	1	Q_1	Langdon [59]
formation of grain boundary				
cavities				
(b) sliding accommodated by	3.5†	2	Q_1	Gifkins [60]
formation of triple-point folds				

*These values may change to n = 2 and p = 1 if the grain boundaries are not perfect sources and sinks for vacancies [53-55].

[†]Gifkins [60] obtained a stress exponent of n = 4.5 and a direct proportionality between the rate of sliding and the subgrain size, λ . The exponent of n = 3.5 is obtained by putting $\lambda \propto \sigma^{-1}$ [61].

different values of p and Q depending on whether the vacancies diffuse through the lattice (Nabarro-Herring creep [51, 52]) or along the grain boundaries (Coble creep [56]); in practice, this process may be considered *either* in terms of grain elongation or in terms of the sliding displacement [67-69]. For the latter accommodation, plastic flow takes place between triple points on either side of the grains, giving n = 1, p = 1 and $Q = Q_{gb}$ [57].

Diffusion creep is well understood in simple metallic systems, but there is an additional complication in ceramics because of the presence of two ionic species. Since the cations and anions both participate in the diffusive process, it is necessary to consider ambipolar diffusion and mass transport along parallel diffusion paths [70-72]. The significance of this effect in terms of temperature and grain size is discussed in detail elsewhere [20].

Grain boundary sliding without concomitant grain elongation, termed Rachinger sliding, may arise in two distinct ways depending on whether there is a glassy phase at the boundary [58] or the crystalline nature of the lattice is continuous up to the boundary plane [59, 60]. The former situation is not generally important in metals, but it becomes important in ceramics such as Si_3N_4 where a thin glassy phase is often present at the majority of grain and interphase boundaries [73-75]. It is now clear that the presence of this phase has a marked influence on the mechanical properties observed at high temperatures [76, 77]. In the absence of a glassy phase, sliding may be accommodated locally by the opening up of grain boundary cavities [59] or by the formation of short folds at the triple points [60].

As indicated in Table AIII, many of the experimental results give $n \simeq 1.5$ to 2.5 at intermediate to high stress levels: an example is shown by the data for Sialon and Si₃N₄ where, typically, $n \simeq 2$. These results are significant because the presence of a glassy phase and the reports of intergranular cavitation and triple point cracking [78] suggest the occurrence of some form of Newtonian viscous sliding with n = 1. This apparent discrepancy probably arises because there is an additional component of strain due to the evolution of grain boundary cracks and cavities, and indeed a statistical model based on the elastic opening of cracks due to the presence of cavities leads to a stress exponent of n = 2 [79].

Finally, it should be noted that some possible boundary mechanisms are not included in Table II because the models require further development: for example, the viscous or diffusive growth of intergranular cavities [79], the role of a solutionprecipitation process through the intergranular glassy phase [80] and elastic or compliance creep arising from cavity formation [81] and crack growth [82].

7. Discussion

This paper tabulates the available creep data for

ceramic materials and summarizes the theoretical deformation mechanisms in terms of the dependence of steady-state creep rate on stress, grain size and temperature.

Some general indications of the rate-controlling process may be obtained from a comparison of the experimental data in Tables AI and AIII and the predictions of the theoretical models in Table I or, for polycrystalline materials, Tables I and II. However, the experimental studies often include additional information, such as observations on subgrain formation or dislocation configurations and direct measurements of the boundary displacements due to sliding. These additional microstructural observations, and the significance of the mechanical data for specific materials, are considered in Part 2.

8. Conclusions

Part 1 may be summarized briefly as follows:

(1) The creep data available at present for ceramic materials are tabulated in terms of the shapes of the creep curves and the dependence of the steady-state creep rate on stress, grain size and temperature;

(2) Numerous theoretical mechanisms are available for intragranular and intergranular deformation processes, and the significant predictions of these mechanisms are reviewed.

The detailed microstructural evidence and the relationships between ceramic creep and metallic creep are considered in Part 2 of this review.

Acknowledgement

This work was supported by the United States Department of Energy under Contract DE-AM03-76SF00113 PA-DE-AT03-76ER10408.

Appendix

The creep data are summarized in three tables: Table AI for single crystals, Table AII for bicrystals and Table AIII for polycrystalline materials. The creep testing techniques are indicated by B (bending), C (compression) or T (tension): tests conducted at high temperatures under a constant strain rate are designated CSR. The shapes of the creep or stress—strain curves are indicated by the letters A to G using the types illustrated schematically in Fig. 1. The references in Tables AI to AIII are numbered separately from those contained in the text.

Appendix references

- 1. R. W. CHRISTY, Acta Metall. 2 (1954) 284.
- 2. Idem. ibid. 4 (1956) 441.
- 3. V. PONTIKIS and J. P. POIRIER, Scripta Metall. 8 (1974) 1427.
- 4. Idem, Phil. Mag. 32 (1975) 577.
- 5. V. PONTIKIS, Acta Metall. 25 (1977) 847.
- 6. J. B. WACHTMAN and L. H. MAXWELL, J. Amer. Ceram. Soc. 37 (1954) 291.
- 7. Idem, ibid. 40 (1957) 377.
- 8. R. CHANG, J. Appl. Phys. 31 (1960) 484.
- 9. W. G. ROGERS, G. S. BAKER and P. GIBBS, "Mechanical Properties of Engineering Ceramics", edited by W. W. Kriegel and H. Palmour (Interscience, New York, 1961) p. 303.
- 10. M. L. KRONBERG, J. Amer. Ceram. Soc. 45 (1962) 274.
- 11. H. CONRAD, G. STONE and K. JANOWSKI, Trans. Metall. Soc. AIME 233 (1965) 889.
- 12. M. V. KLASSEN-NEKLYUDOVA, V. G. GOVORKOV, A. A. URUSOVSKAYA, N. N. VOINOVA and E. P. KOZLOVSKAYA, *Phys. Stat.* Sol. 39 (1970) 679.
- 13. K. C. RADFORD and P. L. PRATT, Proc. Brit. Ceram. Soc. 15 (1970) 185.
- 14. A. H. HEUER, R. F. FIRESTONE, J. D. SNOW and J. TULLIS, "Ceramics in Severe Environments", edited by W. W. Kriegel and H. Palmour (Plenum, New York, 1971) p. 331.
- 15. R. L. BERTOLOTTI and W. D. SCOTT, J. Amer. Ceram. Soc. 54 (1971) 286.
- 16. P. SHAHINIAN, ibid. 54 (1971) 67.
- 17. V. G. GOVORKOV, E. P. KOZLOVSKAYA and N. N. VOINOVA, *Phys. Stat. Sol. (a)* 11 (1972) 411.
- 18. V. G. GOVORKOV, E. P. KOZLOVSKAYA, KH. S. BAGDASAROV, N. N. VOINOVA and E. A. FEDOROV, *Kristall.* 17 (1972) 599.
- 19. D. J. GOOCH and G. W. GROVES, J. Mater. Sci. 8 (1973) 1238.
- 20. Idem, Phil. Mag. 28 (1973) 623.
- 21. V. W. NEHRING and J. T. JONES, J. Amer. Ceram. Soc. 56 (1973) 50.
- 22. R. F. FIRESTONE and A. H. HEUER, *ibid.* 56 (1973) 136.
- 23. E. I. AKSEL'ROD, I. I. VISHNEVSKII, E. R. DOBROVINSKAYA and N. D. TAL'YANSKAYA, *Dokl. Acad. Nauk SSSR* 213 (1973) 331.
- 24. D. J. MICHAEL and R. E. TRESSLER, J. Mater. Sci. 9 (1974) 1781.
- 25. B. J. PLETKA, T. E. MITCHELL and A. H. HEUER, J. Amer. Ceram. Soc. 57 (1974) 388.
- 26. R. E. TRESSLER and D. J. BARBER, *ibid.* 57 (1974) 13.
- 27. R. E. TRESSLER and D. J. MICHAEL, "Deformation of Ceramic Materials", edited by R. C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 195.
- 28. R. F. FIRESTONE and A. H. HEUER, J. Amer. Ceram. Soc. 59 (1976) 24.
- 29. B. J. PLETKA, T. E. MITCHELL and A. H. HEUER, "Electron Microscopy in Mineralogy", edited by H.-R. Wenk (Springer-Verlag, Berlin, 1976) p. 404.
- 30. B. J. PLETKA, A. H. HEUER and T. E. MITCHELL,

Reference	Experimental cond	litions					Experimen	tal results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, Q (kJ mol ⁻¹)
AgBr Christy [1] Christy [2]	300 -	(100), (111) (100)	300–410 –	0.12 - 1.2	ı ر	Air -	C, D -	1	290 340
AgCl Pontikis and	> 40	(100)	270-440	0.15-0.98	C	Ar	1	З	155
Pointer [3] Pontikis and	ţ	(100)	308	0.2 - 0.7	С	1	А	5.3	I
Pontikis [5]	-	(100)	308	I	C	Air	А	6.1	Ι
Al ₂ O ₃ Wachtman and	Ι	~ 30° to	1000-1300	29–147	Т	Air	D	1	I
Wachtman and	1	[0001] Various	900 - 1400	7-90	T,B	Air	D	I	I
Maxwell [7] Chang [8]	"pure" to	For basal	1550-1925	5-20	Т	ų	А	4.55	755
Rogers	20 000 CI ₂ O ₃ -	- -	1000 - 1200	ł	В	I	c	~ 6	I
<i>et a</i> l. [9] Kronberg [10]	I	60° to	1200-1700	14 - 140	CSR	Air	ы	ł	355-390
Conrad	ł	[UUU1] 60°-70° ta	1200-1500	5-50	CSR	Air	ы	5.2	460
er al. [11] Klassen- Neklyudova	700	[0001] 60° and 90° to [0001]	1500-2000	20-180	CSR	Vac.	I	2.1-4.1	310-1340
et al. [12] Radford and	300-4500	Various	1200-1650	I	CSR	Air, H_2 , Ar	I	I	I
Heuer	1	[0001]	1600 - 1800	86-114	Т	Air	В	ю	375-490
et ut. [14] Bertolotti and	1	45° to [0001]	1400 - 1700	1045	IJ	Vac.	ł	I	420545
Shahinian [16]	I	[0001]	1700-1900	172-220	Т	Vac.	D	I	1

TABLE AI Cont	tinued								
Reference	Experimental conc	litions					Experiment	al results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, <i>Q</i> (kJ mol ⁻¹)
Govorkov et al. [17]	"pure", 700	0°, 60°, and 90° to 100011	1750-2000	319–28	CSR	Vac.	I	3.9	480510
Govorkov et al 1181	1	various	300–1900	1	Identation	i	1	I	1
Gooch and Groves [19]	1	$\frac{1}{2}$ ° -6° to	1600 - 1800	65-180	Т	Air	c, D	6-7	840-1300
Gooch and	"pure", 240_770	0°,8°,10°, 0°,8°,10°,	1200-1750	1	CSR	Air	E, F	4.2–19	590-920
Nehring and Isnae [21]	1		1300	32	В	Air	Ý	ł	1
Firestone and	1	60° to [0001]	1460-1500	ļ	CSR	Air	म	I	I
Aksel'rod	I	ì	1650-1970	30 - 300	В	Vac.	ł	4.2	820
Michael and	I	[0001]	1800-1850	225-254	CSR	Air	ł	6.2–6.6	530
Pletka <i>et al.</i>	ł	0°,60° to	1200-1500	30-60	CSR	Air	щ	1	ι
Tressler and	1	[1000]	1760–1875	32-36	CSR	Air	I	8.5-12.4	670-1260
Barber [20] Tressler and Michael [27]	< 50, 2400–7700 Ti ³⁺	[0001]	1760–1875	1	CSR	I	ы	6–12	480-710
Firestone and	1 1	[0001]	1600-1900	75-120	T	Vac.	C	2.7-3.4	I
Pletka <i>et al.</i>	. 1	For basal	1400 - 1700	8.8-64	CSR	I	Э	١	1
ן <i>ביי</i> ן Pletka <i>et al.</i> רפסו	1	sup 60° to <i>c</i> -axis, 20° +0 / 11 3 03	1400-1720	10-70	CSR	Air, Vac.	ы	·	ļ
Cadoz et al.	١	For prismatic	1400-1800	I	CSR	Air	н	l	I
[31] Cadoz <i>et al.</i> [32]	l	sup For prismatic slip	1450	1	CSR	ł	I	I	1

TABLE AI Cont	inued								
Reference	Experimental con	ditions					Experimen	tal results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, <i>n</i>	Activation energy, <i>Q</i> (kJ mol ⁻¹)
Rivière et al.		For prismatic	1450		CSR		I	I	1
Cadoz <i>et al.</i>	Ι	For prismatic	1450	I	CSR	ļ	1	I	ļ
Kotchick and Traselar 1351	< 1000, 0.13% SiO	sup <1120>	1550-1850	ł	CSR	Vac.	IJ	4-20	210-630
Cadoz et al.	-	Perpendicular	1400 - 1800	I	CSR	Air	E, G	ł	770–960
Castaing et al. [37]	l	Perpendicular to [0001]	25 - 1800	I	CSR	ļ	I	1	I
Al ₂ O ₃ –MgO Palmour [38]	i	(100), (110),	1550-1850	ł	CSR	I	ц	1.76-4.5	305-805
Lewis [39]	< 1000	<pre>(111) (100), (110), (101), (111)</pre>	1300-1520	I	CSR	I	i	ł	I
Doukhan	20	(111)	1300-1450	90 - 110	U	Air	A	3.9	510
e <i>t u</i> . [40] Hwang <i>et al.</i> 111	I	45° to (111)	1790-1895	I	CSR	Ar	ц	ł	I
[+1] Mitchell	1	ana (101) -	1790–1895		CSR	I	ц	3.9	870
et at. [42] Doukhan	"pure"	[001]	1550 - 1740	40 - 90	C	Air	A	4.5	580
Duclos et al.	Low	[001]	1575 - 1730	88-118	c	Air	B, D	4	550
[44] Duclos [45]	I	[001], [110],	1220-1250	120160	C	Air	D	I	290-340
Ductos and	I	[111]	1350-1650	30-140	CSR	I	(۲)	3.9	500
Duclos [47]	I	(111)	1420 - 1630	60250	CSR	Air	Е	3.7	560
Al ₂ O ₃ –SiO ₂ Dokko <i>et al.</i> [48]	various	3 to 6% off c axis	1400 - 1500	I	CSR	Air	I		1
Menard et al. [49]	ł	ſ	70600	4-12	CSR	Air	í.	I	Ι

TABLE AI Conti	ned								
Reference	Experimental cone	ditions					Experiment	al results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, <i>Q</i> (kJ mol ⁻¹)
CaF ₂ Phillips [50] Urusovskaya and Govorkov	"pure", doped with Sm and Nd	<pre>{100,(111) (110)</pre>	25 - 1000 200 - 1120	1 1	CSR CSR	Air Ar	טט	1 1	1 1
[51] Feltham and Ghosh [52]	10	(100)	950-1100	6.9–31	C	Air	A	4.1-5.0	280
CdTe Hall and Vander Sande [53]	10	i	25500	I	CSR	Air	F, G	ł	I
CoO Clauer <i>et al.</i> 1541	< 1000	(100)	1000-1200	6-12	C	Ar, P_{O_2}	D	6.8	435-365
Clauer et al.	< 1000	(100)	1000-1240	6 - 12	C	P_{O_2} varied	D	7.1	ł
Krishnamachari	10-5000	(100)	950-1100	7-31	C	Air, Vac.	A	3-5	170-280
and Jones [50] Krishnamachari	10	(100)	1000 - 1100	13.8	U	Air	A	l	300
Krishnamachari	1	[001]	1000	14	C	1	1	I	I
et al. [30] Nehring et al.	1500	[100]	1000 - 1290	7.6–14	C	Air	1	5.0	210
Nehring and	I	ł	1100	8.2	C	Ĭ	D	i	I
Castaing et al.	1	(001)	- 196 to 1123	l	CSR	Air	ы	ł	I
Routbort [62] Dominguez-	1 1	<100> [001]	1000 1100-1400	_ 5 –25	csr c	$P_{\mathbf{O}_2}$ varied $P_{\mathbf{O}_2}$ varied	ыı	_ 6.3–8.5	- 200
Rodriguez <i>et al.</i> [63]									

I APLE AL COM	minen								
Reference	Experimental con-	ditions					Experiment	tal results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, Q (kJ mol ⁻¹)
CoO-NiO Griffin and Smyth [64]	1	[001]	1000–1300		υ	t	Q	1	ſ
Cu ₂ O Schmidt-	ر	(110)	006	~ 4.7	C	Ar/O_2	۷	1	I
Fries et al.	10	[001]	800	10	С	Ar/O_2	ł	ì	ļ
l oo J Martinez- Clemente	10	(001), (110)	RT-800	3-10	CSR	P_{O_2} varied	ц	1	ł
et al. [67] Bretheau et al.	I	(100),(110)	700-1000	224	U	Ar/O_2	¥	5.1-6.0	190–740
Bretheau and	ŧ	[110], [100]	800-830	3-17	C	Air	١	I	Ι
Dolin [69] Torres- Villaseñor	ł	(051), (122)	RT-600	215-353	CSR	Castor oil	E, G	1	ł
et al. [70] Fries et al.	١	[001], [110]	800	1, 5 - 10	C	ł	1	I	t
[11] Sieber et al.		(001),(011)	250,450	ŧ	CSR	Ar, Air	1	I	t
[12] Bretheau <i>et al.</i> [73]	I	<pre><001>, (011> <111></pre>	700 - 1000	224	C	P_{O_2} varied	A, D	5.1	170
FeO Reppich [74]	1	(100)	I	١	CSR	P_{O_2} varied	Е, F	4.4	355
InP Brown <i>et al.</i> [75]	1	(001),(123)	480–730	3-20	CSR	Air	E, G	ł	Į
KBr Montemayor	15	(100)	377667	0.8-1.4	U	Air	A	5.3	84-140
et ut. [70] Yavari and Langdon [77]	< 350	(100)	240660	0.2-10	C	Air	A	4.3-6.7	106–183

TABLE AI Conti	nued								
Reference	Experimental cond	litions					Experiment	al results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, Q (kJ mol ⁻¹)
KCl Geguzin <i>et al.</i> [78]	"pure"		700–750	0.0098-0.98	Т	Air	E, G	24	1
Lif ⁷ Gilman [79] Phillips [80]		<pre>(100),(110) (100) (100)</pre>	-196-600 25-800	1 1	CSR CSR	Air Air	- 4	1	ş I
rnuups [81] Budworth and Pack [82]	ou ppm mg 65	<pre><100> <100, <111></pre>			CSR	– Air		1	1
Day and Ion [83]	I	(100)	300-700	I	CSR	I	F, G	I	I
Fotedar and Stoebe [84]	3-800 Mg	(100)	24-360	1	CSR	1	Ŧ	ł	I
Brown et al.	< 2	(100)	600700	0.8	С	1	Ι	1	140
Reppich [86] Coghlan <i>et al.</i> [87]	<pre>< 1 < 1 </pre>	<pre><(100) <(100)</pre>	375–800 500–671	0.6–35 0.6–3	υu	I I	A U	9.8	- 380
Menezes and Nix [88]	~_1~	(100)	530620	12	Ŭ	I	D	ł	1
Narayan Rao and Ruoff [89]	< 25	(100)	650-750	1.3-2.4	C	Ar	A	3.7-5.1	200
Reppich [90] Reppich [91]	1-1300 Mg "pure", 1300-Mg	<pre>(100) (100)</pre>	RT-800 20-700	11	CSR CSR		- F, G	1	
Streb and Reppich [92]	0.7-690 MgO	(100)	250-800	1 - 100	С	I	А	I	1
Reppich and Streb [93]	0.7-690 MgO	(100)	250-800	1 - 100	C	I	Α	4	220
Brown <i>et al.</i> [94]	11 - 100	(100)	250-700	I	CSR		ł	ł	ł
Menezes and Nix 1951	4080	<100>	1	I	ļ	I	I	3.5-7	l
Cropper and Pask [96]	300	(100), (111)	650-750	7–35	C	Air	Υ	3.1-4.1	220

TABLE AI Con	tinued								
Reference	Experimental con	nditions					Experimenta	l results	and the second
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of ' creep curve	Stress exponent, <i>n</i>	Activation energy, Q (kJ mol ⁻¹)
Ruoff and Narayan Rao	< 25-1700 MgO	(100)	650-750	12	C	Ar	A	3.6-5	200–250
[77] Yu and Li [98]	< 50	<100>	600-750	430	Impression loading	Air	A	4.5	210-225
MgO Hulse and Book 1901	6000	(100)	- 196-1200	I	CLR	Air	F	1	I
Cummerow	ł	(100)	1450-1700	15-75	В	Ar	Α	47	335-670
Neiman and Rothwell	ì	(100)	1000	50	В	Vac.	A	6.3	I
Hulse et al.	6000	(110),(111)	26-1250	1	CLR	Air	н	I	I
LUZI Stokes and Li	1	(100)	RT-1850	I	CSR		I	ļ	I
Day and	1	(100)	1000-2000	i	CSR	Ar	F, G	,	I
Copley and	200 - 1000	(100), (111)	1000 - 1600	P	CLR	Air	Ĩ	I	I
Rothwell and	I	(100)	1000 - 1630	1469	B	Vac.	A	3-5.2	140–565
Atkins et al.	1	ĩ	1060 - 1727	1	Indentation	Vac.	I	Ι	420
Atkins and Tabor	I	ì	700-1700	I	Indentation	Vac.	I	Ĩ	460
[108] Day and Stoless [100]	ļ	(110)	1400 - 1700	1	CSR	Ar	Ŀ	I	ł
Atkins and Takes [10]	J	ş	, 600–1700	ſ	Indentation	ļ	, I	ł	460
Day and Stokes [111]	~ 1250 + 3000 NiO	(100)	1200-1800	1	CSR	Ar	F, G	1	I

16	TABLE AI Conti	inued								
6	Reference	Experimental con-	lditions					Experiments	al results	
		Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, <i>Q</i> (k J mol ⁻¹)
	Hulse [112] Day and		<pre>(111) (100),(110)</pre>	26–1530 1800	11	CSR CSR	Air Ar	- Ц.	1 1	
	Stokes [113] Cropper and	5600	(100)	1125-1300	43-86	CLR	Air	A	1	ł
	Pask [114] Moon and	200-400	(100)	25 - 1600	I	CSR	Air, Ar	Ч	1	I
	Hüther and	< 100	(100)	1347-1797	25-100	C	Ar	A	59	1
	Reppicn [116] Birch and	500	(100)	1323	68	c	Air	А	1	450
	Wilshire [117] Reppich and Unither [119]	< 100	(100)	1347-1797	6183	С	Ar	A	1	1
	Ischner and	I	(100)	1400 - 1800	2283	С	Ar	A	4 - 100	I
	Birch and	500	(100),(111)	1323	68-155	C	Air	Υ	1	475
	Witshire [120] Birch and	500	(100)	1323	68	c	Air	A	4.1	450
	Wilsmre [121] Clauer and Wilson [1321	500	(011)	1200-1500	29–86	Т	Vac.	А	3.8-4.5	395
	Clauer <i>et al.</i>	500	(110)	1400	44	Т	I	I	1	I
	Dokko and Dokko Dokko	Various	(100), (111)	1200 - 1400	Ι	CSR	Air	Е, Ғ, С	I	1
	Routbort [125]	Various	(100), (111)	1300 - 1800	3-40	CSR	Не	й.	4.2-8.4	ł
	Dixon-Stubbs and Wilshire	Various	(100),(111)	1323	68-155	C	Air	¥	£	1
	[1.20] Routbort [62]		Various	1100	1	CSR	Inert	Ċ	I	ł
	NaBr Christy [2]	1	(100)	580-750	0.6–1	C	1	1	1	345

•

TABLE AI Cont	tinued								
Reference	Experimental con	ıditions					Experiment	tal results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	T est technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, Q (kJ mol ⁻¹)
NaCl									
Christy [2]		1	600 - 750	I	C	1	Α	3-4	285
Phillips [81]	20	(100)	-203-600	Ι	CSR	I	1	I	I
Ilschner and Rennich [127]	"pure"	(100)	500-750	0.24 - 0.74	C	-	D	6	255
Geguzin et al.	"pure"	(100)	750-870	0.01-1	Т	Various	A, D	4	240
Hesse [128]	< 2	Various	-173-630	**	CSR	Various	Ċ	I	ł
Blum and	> 1	ł	550-800	0.4-3.5	C	Ar	A	4	245
Schuh et al.	1300 Ca	(100)	260-780	0.15 - 19.6	C	Ar	Υ	4	150–335
Carter and Heard [131]	30	Various	25-500	ł	Triaxial	CO2	ტ	٢	138
Messerschmidt	"pure"	ł	150 - 300	I	CSR	Vac.	I	1	ł
Poirier [133]	460	(100)	480–795	1.0	C	Ar	Α	4.2	240-250
Poirier [134]	I	(100)	480795	0.1 - 1.0	С	Ar	ł	I	Ι
Blum [135]	"pure", 1-12 Ca	I	150-801	6-41	C	Ar	А	4 - 30	I
Pontikis and Poirier [4]	• - - 1	<100>	308	0.3-0.5	C	ł	¥	6.3	I
Pontikis and Poirier [136]	I	(100)	308, 678	I	С	I	V	7.3	I
Pontikis [5]	I	[001]	679	0.2 - 0.4	C	Air	A	7.1	ł
Guillopé and Poirier [137]	< 10500	[001]	250-790	0.15-12	C	Ar	1	1	I
Eggeler and Blum [138]	з	(100)	923-1033	0.5-1.2	C	Air	A	4.5	
NbC									
Williams [139] Dement'yev	- 320 Si	<pre>(100) (110)</pre>	800-1600 1800-2700	_ 12-68	CSR. C	Vac. Neutral	– A, B	- 3.3-4.8	355-500

Reference	Experimental con	nditions					Experimen	tal results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, Q ($kJ mol^{-1}$)
NiO Dominguez- Rodriguez and	Various	1	- 72-700	I	CSR	ŀ	1		I
Castaing [141] Dominguez- Rodriguez and	1000	(100)	20-1200	ł	CSR	Air	Ŀ	I	l
Castaing [142] Dominguez- Rodriguez	Various	(001)	72-1300	40-100	CSR	Air	IJ	ł	1
<i>et al.</i> [143] Cabrera-Caño	100	<100>	950-1200	50-120	ບິ	1	A	11.6	480
Cabrera-Caño	100	(100)	1050 - 1200	25-120	C	Air	Α, C	11.4	520
et at. [143] Routbort [62]	Ι	(100)	1100 - 1400	8 - 20	CSR	$P_{\mathbf{O}_2}$ varied	ц	l	I
Ni _{0.66} Fe _{2.34} O ₄ Veyssière <i>et al.</i> [146]	· 1	(100),(110)	1100-1600	l	CSR	1	l	l	l
PbS Seltzer [147] Seltzer [148]	1 !	<pre><110>,<100></pre>	575–750 650–700	1.2–2.9 2	U U	S ₂ H/ ₂ H H ₂ H2S	U I	47	165–280 –
SiC Hirai and Niihara [149]	ł	Various	1400–1500	ł	Hot hardness	ì	I	I	520
TiC Williams and Solved 11501	I	1	800-2200	15-490	В	Vac.	ł	I	Ι
Williams [139] Hollox and Smallman [151]	200	(100) (100)	800-1600 900-1250	1	CSR	Vac. Vac.	۲. ۲.	1 1	1 1

TABLE AI Conti	nued								
Reference	Experimental con	ditions					Experimenta	il results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, Q (kJ mol ⁻¹)
TiO Vere and Smallman [152]	300	(100)	1000-1250	1	CSR	Vac.	Ĺ	1	ł
TiO ₂ Ashbee and Smallman	300	(100), (110)	RT-1300	3	CSR	Air, Vac.	ŗ.	ł	ŧ
Ashbee and Smallman	Various	(100),(110)	600-1100	1	CSR	Air	-	ł	ł
[154] Hirth and	"pure"	(111)	777-1052	20-90	C	Air, Vac.,	А	1.5-2.0	160 - 330
Brittain [155] Farb <i>et al.</i>	Various	(001)	572-1230	3870	В	He N2, O2	A, D	1	210-750
[156] Bell et al.	< 75	(100)	900 - 1040	3.4-83	C	Air	А	1.8	275
[157] Bell <i>et al.</i>	< 75	(111)	1000 - 1040	2.8–69	С	Vac.	А	1.6	215
Krishnamachari	< 75	(111)	1000 - 1040	13,869	C	Vac.	A	1.6	215
et al. [159] Krishnamachari	< 75	(111)	1000 - 1040	2.8-69	C	Air, Vac.	А	١	4
et al. [100] Blanchin and	360	Various	527-1427	10-150	CSR	Po2 varied	ш	a se	ţ
Faisant [101] Blanchin <i>ei al.</i> [162]	360	[001]	. 5231423	i	CSR	$P_{\mathbf{O}^2}$ varied	ध	ι	(
UO ₂ Armstrong 24 al 11631	100	(110),(111)	1340-1685	2556	В	Н	D	3.3	490
Sawbridge and Sykes [165]	 350	<100), <111) Various	1100–1600 1327	11	CSR CSR	CO/CO ₂ Ar	14	1 1	1 1

Reference	Experimental conc	litions					Experimental	l results	
	Total metallic impurity or dopant (ppm)	Orientation of stress axis	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Activation energy, <i>Q</i> (kJ mol ⁻¹)
Seltzer <i>et al.</i> 11661	< 500	(100)	1100-1300	38-124	С	co/co ₂ ,	A	1.7-17	230-560
Mordike [167] Alamo <i>et al.</i> [168]	i i	<[111), (011) -	500 - 1600 700 - 1400	30–225	CSR CSR	г I I	F, G	11	1
VC _{0.85} Hollox and Venables [169]	i	Various	1000-1700	1	CSR	Vac.	}	I	1
Y ₂ O ₃ Gaboriaud 11701	i	(110)	1700-1800	20-140	CSR	Air	ł	I	I
Gaboriaud [171]	1000	(110)	1550-1800	20 - 140	C .	Air	A	4	400
Y ₃ Fe ₅ O ₁₂ Rabier <i>et al.</i> [172]	I	<pre>(100), (110), (111)</pre>	1200-1350	I	CSR	Air	ł	I	I
ZrC Williams [139] Lee and Haggerty	ł I	<pre><100></pre>	800 - 1600 1400 - 2000	- 30700	CSR	Vac.	1 1	ري م	460
[1/2] Zubarev and Dement'yev [174]	"əınd,,	l	2200–3000	80-210	В	1	I	3.0	335

TABLE AI Continued

TABLE AII High tempe	erature mechanical p	roperties of ceramic bi-	crystals and tri-cr	ystals	
Reference	Boundary misorientation	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere
Al ₂ O ₃ Davis and Palmour	Various angles	1700-1900	10–24	CSR	Vac.
Bertolotti [176]	to [1001] Various	1500 - 1700	I	C	Vac.
Becher and Palmour [177]	Tri-crystal	1210-1820	ĺ	CSR	Vac.
NaCl Adams and Murray [178]	I	440700	1-2	U	Air, Ar
MgO Adams and Murray	I	1355–1495	2–30	U	Ar
Murray et al. [179]	Various	1300-1500	2 - 14	0	Ar
Mountvala and Murray [180]	Various (tilt and twist)	1200 - 1500	5-120	C	Ar
UO ₂ Poteat and Yust [181]	ļ	1430	27	CSR	I

TABLE AIII H	ligh temperature n	nechanical pro	perties of cerai	mic polycrystals			!				
Reference	Experimental co	nditions						Experim	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
AgBr Christy [1]	300	l	1000	320–380	0.6	U U	Air	C, D	1	ţ	1
Al ₂ O ₃ Stavrolakis and Norton [182]	5000	ĺ	١	25-1500	13-48	Torsion	t	A	I	1	I
Coble and Vingery [182]	I	5095	15	1275	1.7-27.6	Torsion	I	Α	1	I	I
Chang [184] Chang [184] Folweiler [185] Warshaw and	Various MgO-doped 300 MgO	95–97 99+ 99+	25-30 1-34 3-13	$\begin{array}{c} 1510{-}1570\\ 1400{-}1700\\ 1600{-}1800 \end{array}$	$^{-1.4-172}$	T CSR B	Air Air Vac.	A I	'	~ 5 7 ~	840 545 545
Norton [186] Beauchamp	Various	9296	2.5 - 100	1000-1350	ļ	В	I	A	1	l	545
<i>et al.</i> [187] Chang <i>et al.</i>		1	20, 75	1700-1800	1	CSR	Vac.	G	l	١	ł
Coble and	Various	Ι	100	1640 - 1900	4-26.9	В	Vac.	A	I	1	1170
Dawihl and	Various	93.5-95	7-10	1000-1250	13-294	U	I	A	~1	1	90, 495
Fryer and	~ 1%	92–93	2-20	1384-1675	0.34-1.7	Т	Air	Α	1.8–2.3	1	505, 775
Passmore and	300 MgO	99.5	2	1357-1497	6.7-62	В	Vac.	A	1 - 2	ł	595
Vashos [172] Passmore et al.	•	98	2	1200-1500	I	CSR	Air	Ċ	1	1	Ι
Bakunov <i>et al.</i> Bakunov <i>et al.</i>	3000	96.3	45	1650-1850	1.4	В	Vac.	ł	1	١	825
Hewson and Kingery [195]	(a) 1–1500 MgO (b) 500	> 98	15-100	1641–1830	~ 6.9	£	Vac.	I	1	I	1
l'rostel [196] Shapiro <i>et al.</i> [197]	MB1103 0.25% MgO -	99.5 97–99	3 20–120	1450 1650–1900	9.8–49 1–3	D m	Air -	A -	~		770 590

TABLE AIII Con	tinued										
Reference	Experimental co	inditions						Experim	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	T est technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Sugita and Pask	2300 MgO+	99+	3	1300-1470	6.7-10	c	Air	1	1.1 - 1.3	1	400-520
[198] Heuer <i>et al.</i>	2200 NiO "pure",	99.5	1.2-11	1300-1700	6.7-172	CSR	I	Ц	1.1 - 1.6	2.5	490–570
Engelhardt and	1000 MgO+	95–98	~ 12	1450 - 1700	9.8-73.5	В	Vac.	Α	1,4	I	585
I hummler [200] Mocellin and	1000 StO ₂ 260–1300	+66	34-65	1600 - 1850	6.7	C	Vac.	I	I	I	295-525
Kingery [201] Becher [202] Vishnevskii	MgU < 1000 2000	99+ 98	$2-20 \\ 10$	$\frac{1210{-}1700}{1300{-}1800}$	41.3–344 1.5–77	BC	Vac.	1 1	$^{-}_{0.8-1.2}$	11	570
et al. [203] Davies and Sinha	I	Ι	ł	1600-1750	11-55	Т	Air	Α	I	1	. I
Ray [204] Heuer <i>et al.</i> [14] Andrjanov <i>et al.</i>	2500 MgO -	94.5	$\frac{2}{15-80}$	1000–1200 1450		Triaxial B	1 1	t I	$^{-1.0-1.5}$	- 1	! 1
[205] Vishnevskii	1000 MgO+	98	10	1500-1800	7.8-24.5	g	I	A	1.1-1.2	I	585
<i>et al.</i> [206] Fryer and	1000 others 	71-98	1	1356-1468	I	C	Vac.	A	1 - 2	I	400-505
Thompson [207] Davies and Sinha	150% Si	5,66	13-18	1500-1700	4.1-41.3	Т	Air	V	1,2	~ 2	590-690
Kay [208] Sugita and Pask	2500 MgO	39.5	ŝ	1450	9.8–49	С	Air	A	1.8	I	I
Crosby and	"pure" 2% Ni	95.5-98.8	928	1450-1800	6.9-44.8	C	Air	Υ	0.7-2.5	2.7	410-625
Evans [210] Hollenberg and	Various	> 98	642	1400-1525	1.049	В	Air, D- moried	A	1.0-2.6	1.7–1.9	475-620
Crosby and	< 1000	95.5-95.8	13-28	1600 - 1700	20	C	Ar Ar	D,	Ι.	I	ţ
Evans [212] Krohn <i>et al.</i>	7300	- - - -	18	775-900	1	CSR	Air		I	ŀ	285
[213] Lessing and	Various	98	6-71	1400-1500	3.9-49	В	$P_{\mathbf{O}_2}$ varied	A	1.0-1.3	2.0-2.2	410-625
Gordon [214] Davies [215]	1000 MgO	99.5	1530	1450 - 1750	5-50	T	Air	A, B	1 - 2	2	640

TABLE AIII Con	tinued										
Reference	Experimental c	onditions						Experim	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (μm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, <i>Q</i> (kJ mol ⁻¹)
Lessing et al.	Various	> 98	5-1200	1200-1500	4-100	В	1	ļ	ł	I	1
Cannon and Charby, 12171	100-5000 McO	+66	14-65	1600 - 1700	27.5-124	C	Ar	в	1.2, 2.6	2, 0	595
Lessing and	Various	> 98.5	9-1200	1350-1550	1-55	В	Controlled	A	1.0 - 2.9	0, 3	390-600
Gordon [218] Hou et al. [219]	Various	98.1–99.9	3 - 100	1400 - 1550	6-50	C	ro, Controlled	V	1.0-2.7	0,2	400590
Cannon <i>et al.</i>	< 1000 +	66	1.2–15	1192-1337	2-150	CSR	ro, Ar, Air	ц	12	2.7–2.9	Ι
[220] Heuer <i>et al.</i>		I	1-5	1315-1450	19.3-55.8	CSR, B	I	I	I	**	I
[221] Ikuma and	Various	Ι	8-100	1100 - 1500	2-17	В	1	ļ	~ ا	1.0 - 1.8	ł
Gordon [222] El-Aiat <i>et al.</i>	Various	99.3–99.8	140	14	~ 30	C	Controlled	ł	1.2-1.3	2,3	I
[225] Porter <i>et al.</i> [224]	2500	ł	7	1273–1479	8-200	CSR	^r 0,	l	1.8	ł	460
Al ₂ O ₃ -MgO Palmour [38] Bakunov <i>et al.</i>	600 3000	99.2,97.5 95.5	0.5–200 15	1350–1800 1650–1750	1.4	CSR B	Vac. Vac.	۲щ I	1.8–6.7 –	- 0.3	695–900 580
[194] Shapiro <i>et al.</i> [197]	1	9697	1220	1300–1500	2-16	В	1	I	1	I	I
Al ₂ O ₃ -SiO ₂ Hulse and Pask	6.6%	75-83	1	950-1100	0.3-8.5	C	I	V	I	I	740
Bakunov <i>et al.</i> Bakunov <i>et al.</i>	3000	98.1	5	1700 - 1800	1,4	В	Vac.	I	I	ł	515
Penty and	> 100	+66	~	1450-1512	10-60	CSR	Air	ł	1.1 - 1.4	ł	700
Lessing et al.	"high	$\sim 1.00\%$	~ 5	1350-1450	12-40	В	Air	I	1.0	1	685
[221] Dokko <i>et a</i> l. [48]	purity Various	98-100	1-20	1400, 1500	I	CSR	Air	Ц	,	- 2	170

TABLE AIII Con	tinued										
Reference	Experimental co	onditions						Experim	ental results		
· ·	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
BaO-Fe ₂ O ₃ Hodge <i>et al.</i> [228]	1	I	я	1000-1200	6.9-41.3	U	1	V	25	1	ł
BcO Chang [184] Chang et al.	Various "pure",	97–99 9.99	25 <i>-</i> 30 20-40	1510-1570 1900	0.41-1.5 -	T CSR	Air Vac.	G A	- '	1 1	505
[188] Vandervoort and	1% MgO -	96.5	7.5-10	1371-1538	10-41	C	Air	A	۲.	I	400
Barmore [229] Shishkov <i>et al.</i>	Various	I	20-65	1400-1850	230	æ	Vac.	A	1.0-1.2	l	295
Fryxell and	Various	85 - 4100	5-100	1200	6,9-69	C	1	A	1,>1	I	420
Chandler [231] Barmore and Vandervoort	",bure"	+66	8-45	1400–1700	6.9–31	в	Vac.	¥	۲ ۲	~ 2	415
[232] Bentle and	< 200,	9.7-99.8	18-77	1700-1900	ł	CSR	1	F	I	1	1
Niletet [233] Bakunov <i>et al.</i> 11041	1 % MgU 2000	94.1	30	1700-1900	1.4	В	Vac.	ł	I	ł	240
[194] Barmore and Vandervoort	< 500	5.66	63±5	1850-2000	1041	C	Vac.	I	2.5	I	610
[234] Cline <i>et al.</i> [235] Walker <i>et al.</i> [236]	200	96.5 79-97	6-10 7.3-1.1	1370-1570 850-1250	21	C CSR	Air -	1 1	5.5	I I	420 420
BeO-UO ₂ Vandervoort and Barmore [237]	< 250	98	6-16	1350-1523	10.3-41.3	U	Air	A	-	5	385-420
CeO ₂ Poluboyarinov et al. [238]	3000	96	15	1350–1450	6.17-24.5	В	Air, He	1	2.2	t	390

, }	Reference	Experimental co	onditions						Experime	ental results		
		Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
	CoO Strafford and	< 15			925-1050	ł	B	P _O , varied		2.3		195
	Gartside [239] Clauer <i>et al.</i>	i	94	25-30	925-1250	2.7–38	C	0_2 , Ar/ 0_2	A	2.0, 6.5	ł	215-335
	[240] Krishnamachari	I	I	I.	1000	13.78	C	I	1		1	I
	et al. [30] Vinjamuri et al. [241]	"pure", 1% Li	66 <	10	1000	27.6-41.4	C	Air	A	3.1-4.4	ł	I
-	CsCl Heard and Kirby [242]	< 1000	98		150-400	Ι	CSR (Triaxial)	ŀ	IJ	4.4	1	150
-	Cu ₂ O Vagnard and	"high"	I	1000 - 3000	RT-600	I	CSR	Ar	ц	1	ł	1
	Menzies and	рипцу —	I	1	RT-400	1	CSR	O_2 , Ar	Ц	1	١	I
	Schmidt-Whitley	, 1	92	50	630-890	5-15	C	O_2	A	68	١	195
	er au. [242] Gervais et al.	١	95	50	1050 - 1100	0.2-0.8	C	Air	Α	1.3-1.5	1.5-2.5	170
	[240] Bretheau <i>et al.</i> [73]	> 1000	95	55	780-1060	5-15	C	$P_{\mathbf{O}_2}$	A	5.4	ł	180
	Eu _z O _a Moore and Morrow [247]	5000	88.1–97.4	3.7-20.7	1100-1400	3-30	C, B	${\rm O_2H_2O}$	A	1	l	460–470
_	FeO lischner <i>et al.</i> [248]	"Analytical grade"	~ 100%	100 - 300	1000-1500	1.8–17.6	C	Po2 varied	A	4.2	i	330
	Reppich [74]	"Analytical grade"	1	100 - 300	650-1300	1.8-19.0	CSR	$P_{\mathbf{O}_2}$ varied	۲ ۰	3.7-4.1	1	340
	Fe ₂ O ₃ Crouch [249]	< 10	69-97	1.5-35	770-1105	2-100	B, C	$P_{\mathbf{O}_2}$ varied	Υ	1.1-3.5	2, 0	310-375

TABLE AIII Cor	ıtinued										
Reference	Experimental co	onditions						Experime	ntal results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Crouch [250] Pascoe [251] Hav <i>et al.</i> [252]	< 10 < 10 -	80–84 76–97	$\frac{5-10}{1.5-6}$	920-1255 900-1251 770-1250	$0.2 - 10 \\ 1 - 50 \\ -$	н ССЦ	P ₀₂ varied 	V V I	1.3-1.6 2-3 1.3		380 250 210.450
Graphite Wagner and	I	I	I	2000-2500	I	CSR	He	I	3.8	I	210
Uttesner (233) Wagner <i>et al.</i>	I	I	ł	20003000	I	CSR	He	1	3.8	I	290
[234] Green [255] Zukas and Green	1 1	! !	11	2500 2500	13.7–22.2 –	T	He He	A A	6.5 5.5	1	
[256] Kotlensky [257] Green <i>et al.</i>			I I	2400–2760 2500	82.7 _	Ŧ	He He	A -		11	1000 - 1090
[258] Green and Zukas	ļ	1	ų	2200-2500	25-32	Т	He	A	5.5	i	I
[259] Fischbach [260] Zukas and Green		"High"	 "Very fine"	2500–2900 ~	34-207	T,C	He He, Ar	A A	14 8	1	1050–1470 1160
[201] Green <i>et al.</i> 1763]	1	I	1	2300-2700	10.5-30	Т	I	A	6 - 10	I	900-1000
Green and Zukas	ł	1	1.	2500	6.6-22	Т	I	A	I	I	1
Zukas and Green	I	> 95	1	2300-2500	23-33	Т	Не	A	68	I	1050
l 2041 Dergunov <i>et al.</i> 13631	I	I	Fine to	RT3227	1	Т	Ar	A	2.3–7.7	ł	8a
Zukas and Green	ļ	I	Fine	2200-2500	Ι	Т	Не	A	5-8	1	1000
Zukas <i>et al.</i> [267] Hirth <i>et al.</i> [268] Barabanov <i>et al.</i>		! []	Fine	2400 2500-4000 20-3200	₹ ↓	F F	He	י 1 1 ט	8		
[269]											

TABLE AIII Con	ttinued										
Reference	Experimental co	onditions						Experime	intal results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
KBr Yavari and Langdon [77]	< 350	100	550	240-500	0.6-10	IJ	Air	A	4.3-6.7	0	106–183
KBr-KCl Stoloff <i>et al.</i>	9	100	350	25-350	I	CSR	Air	I	I	1	I
[270] Cannon and Sherby [271]	"Analytical grade"	~ 100	I	600	0.6–6.9	C.	N_2	¥	5	I	ł
LiF Budworth and	30	100	3000	23-500	I	CSR	Air	Г	i	1	I
Pask [272] Budworth and	30	100	3000	200-700	I	CLR	Air	۲.	I	1	1
Pask [82] Cropper and	< 150	~ 100	100 - 3000	300-550	3-30	C	Air	A	78	0	210
Langdon [273] Langdon [274]	< 150	100	160-3000	400-550	3-30	C	Air	I	6	0	ł
MgO Wygant [275] Hulse <i>et al.</i>	7000 4%	88–98 91–95	~ 10 40–120	$\frac{1100-1300}{26-1250}$	8.3-17 -	Torsion CLR	Air Air	A, B G	5.5 _	11	195 -
Vasilos et al.	2000	~ 100	1-3	1180 - 1260	14–19	В	Air	I	1	I	310
Copley and	300-15 000	> 96	5-400	400-1500	I	CLR	Air	G	ł	ł	1
Passmore	2000	99.5	2-5.5	1110-1530	6.9-37	В	Air	A	1	2,5	400–425
<i>et at.</i> [218] Bakunov <i>et al.</i> 11941	3000	96.9	50	1650-1800	1.4	B	Vac.	1	i	I	370
Day and Stokes	ł	99.5-100	30-800	600-2150	1	CSR	Ar	ц	I ·.	ł	I
Kreglo and	1.8-5.4%	~ 85	1	1204 - 1371	0.17-0.67	C	Air	A	3.8-4.5	ŀ	260
Hensler and Cullen [281]	"Analytical grade"	ì	56	1200-1500	6.9-41	C	"reducing"	1	I	1	225

TABLE AIII Cor	ntinued										
Reference	Experimental c	onditions						Experim	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (μm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Hensler and	1000	97.3–98.9	13–68	1200-1500	6.9-44.8	С	Air	A	2.6	I	465
Hensler and	1000	98	56	1500	29–32	C	"reducing"	Α	I	1	l
Tagai and	1000	88.5-97	4-50	1200-1500	Ι	в	Air	I	>1	ł	435
Zisner and	0.35-2.26%	83 - 100	7_48	1150-1510	1	В	Air	I	~1	I	235-605
1aga1 [200] Shapiro <i>et al.</i>	Ι	95–98	10 - 90	1300-1500	325	В	Ι	I	1	I	590
Langdon and	"pure"	8.66	12-52	1200	34.4-138	C	Air	A	3.3	0	215
Terwilliger	Various	<u>99.5</u>	3-40	1100 - 1400	4.954	В	Air	A	1.0 - 3.6	2—3	ŋ
et al. [287] Hart and Pask	3% LiF	99.4	1	770-850	I	I	1	Α, C	1.1-1.2	I	320
[200] Langdon and	200 - 1900	98.4–99.8	1280	RT-1400	1	CLR	Air	ß	***	I	I
Fask [209] Bilde-	·]	8,66	100 - 190	1300-1460	24-54	C	Vac.	ł	3.2	0	I
Sorensen [290] Gordon and	0.1 - 5%	95-99.5	4_{-30}	1100 - 1400	12.2-46.4	В	Air	Α	1	2-3	ł
Terwilliger [291] Yasuda <i>et al.</i>	Various	Į	10-80	1500-1620	ł	C	Ι	I	1	I	ļ
[292] Crouch [293]	"impure"	83.7	1	1100-1750	ļ	CSR	I	ĹТ	I	I	I
Hurm and	Various	6.66-7.76	13 - 150	1200-1700	14-110	C	02	A	2.8-3.6	0	250-495
Bilde-	Ι	8.99.8	100 - 190	1300 - 1460	2555	C	Vac.	1	3.2	0	320
Sorensen [292] Tremper et al.	0.1-10%	95-99.5	643	1297 - 1400	2.35-26	В	O_2 and	A	0.9 - 1.4	1.9-2.4	305-565
[290] Birch and Wilshire [297]	1500 ³	94–96	10-14	1323	5285	C	Air	Y	б	0	ł

Reference	Experimental cc	onditions						Experime	ental results		
-	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Birch and Wilchire [298]	1500	94-96	10-14	1323	53-84	U	Air	A	1	I	1
Birch and	1500	93–95	10 - 14	1323	70-85	C	Air	Α	I	I	ł
wiisnire [299] Snowden and Pask [3001	"Reagent grade,	, 99	12-17	1200-1400	55.1-138	CSR	Air	A	1.8-7.0	l	290-460
Birch and Wilshire [120]	Various	9599	13-19	1303-1343	5368	C	Air	Α	3.0-3.3	Ι	450
Beeré [301]	"Analy tical	41-86	< 2	800-1400	2-22	Hot- nressing	Ar	I	~1	1	245535
Snowden and Pask [302]	grade" "Reagent grade" 5–15% CaMøSiO.	, 97.7–99.1	17 - 30	1200–1400	45-165	CSR	Air	I	1	l	ł
Lessing and Gordon 13031	5300 Fe	98	58487	1350-1500	2.9-34.3	B	Air	A	2.8-4.1	0	210-295
Birch et al.	1500	94-96	10 - 14	1323	96	C	Air	A	1	ł	ł
Langdon [305] Coath <i>et al</i> .	- 1500	> 99.8 94–96	12-52 10-14	1200 1323	34-103 62	ບບ	Air Air	- A	1 1	1.4	1 1
[306] Birch <i>et al.</i>	5000	93–95	1014	1600	96	C	Air	A	I	I	ł
[307] Lessing et al.	١	> 98	5-1200	1200-1500	4 - 100	В	1	I	1	ł	I
ا 1 مربع Hodge <i>et al.</i> 1 2001	0.05-5.3% Fe	66	7-10	1250-1500	<10	В	0 ₂	Ι	i	I	280-475
Hodge <i>et al.</i>	0-2.65% Fe	Ι	1	ł	I	В	(U.00 atm)	I	1,3	I	1
Yasuda <i>et al.</i>	Various	> 95	19–175	1600	I	c	Air	1	1	2	340
Coath and Wilshim (2111)	1500	94–96	1014	1200	1	C	I	Α	1–3	I	450
Hodge and	Various	~ 100	3-25	1350	2.31 - 10.09	В	Air	A	-	2.0, 2.6	I
Crampon and Escaig [313]	5000 Fe	> 91	0.1-1	700-1050	50-140	C	Air	¥	~1	2.9	1

CABLE AIII Continued

TABLE AIII Con	tinued										
Reference	Experimental co	nditions						Experime	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Dokko and Pact [134]	Various	94.7-100	1600	1100-1400	Į	CSR	A	E, F	1	1	ł
rash [124] Sugarman and Blanchere [314]	"pure", 0.5–2% C	98.5	5-87	1000-1300	8-40	В	Ar	I	1.3	2–3	250
Shetty and Gordon [315]	5300	I	43	1450	1	В	Air	Ι	1.2, 4.1	ł	I
Dixon-Stubbs and Wilshire	Various	7496	10–14	1323	5080	U	Air	A	3, 1.8-3.8	0	475
Crampon and Fecaio (316)	5000	92	0.1 - 1.0	900-1150	10-600	CSR	Air	U	1.2	I	1
Duclos and	I	1	0.1 - 1.0	900-1150	10-600	CSR	ł	Ð	1	ŝ	I
Crampon [317]	5000	91	0.1 - 1.0	700 - 1050	50 - 140	C	1	1]	1	I
Crampon [318]	i	I	0.1 - 1.0	700 - 1050	50-150	C	1	I	1.1	2.8	ł
Dixon-Stubbs and Wilshire [319]	"mo'],,	> 82	40-60	1247–1337	0.94	U	Air	A	-	ì	350
MgO–CaO Coath and	< 1%	94–96	3-16	1123-1323	50-70	C	Air	I	1.8-4.0	1	385435
Wilshire [311] Coath and Wilshire [320]	<1%	93.8–98.8	3-15	1100-1323	58-62	C	Air	1	3.5	1	380
MgO–CaMgSiO ₄ Snowden and Pask [321] NaCI	5% CaMgSiO4	~ 100	31	12001450	3-120	C	Air	A, B	1.0-3.8	1	435–1000
Kingery and Montrone [322]	"Reagent grade" +600-1000 A1 O	95.5-96.1	65-140	740	0.58-0.82	В	Air	в	1	° S	ł
Le Comte [323]	"Chemically	98	100 - 150	29–300	3.4-13.8	C	Oil	1	~ 3-4	1	52-126
Burke [324] Heard [325]	Various 200	99.7 99.5–99.7	200–3000 2000–3000	365 -741 23 -400	0.3-9.6 -	C CSR (Triaxial)	Air CO ₂	V	5.0 5.5	0	155, 205 98

÷ TARIFAIIIC

Reference	Experimental c	onditions						Experim	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, <i>n</i>	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol $^{-1}$)
Blum [135] Robinson et al. 13261	1–12 Cu	~ 100	2000	150Tm 741	6-41 0.48-0.96	00	Ar Air	A A	4,74 5.2		200
Sinha and Blanchere [337]	3000 Al ₂ O ₃ .	ł	I	580-620	0.4 - 1.8	C	Air	Ι	I	I	160
Sinha and Blanchere [328]	Various	16	5.5-37	580-620	0.45 - 1.1	C	Air	¥	1	0~	165
NaCl–KCl Cannon and Sherby [271]	"Analytical grade"	~ 100	100 - 300	600	0.6-3.5	U	N_2	C	3.4–2.9	I	ţ
NbC Kelly and	ł	83.6-100	ł	1600-2300	i	CSR	Ar	I	ł	ł	ļ
Kowcurre [329] Kats et al. [330]	Various	70–93	3-15	2700 - 3200	13-50	C	1	A	1.7	I	340,430
NiO Krishnamachari and Notis [331]	ł	1.66	70	1273–1373	34.5-79.8	U	Air	А	3.2	I	235
PuO ₂ Petrovic [332] Petrovic and Land [333]	1	84–87 84–87	10	800-1500 800-1500	}	CSR CSR	Vac.	ı ۲.	4.9–90 37–53	11	120–155 565–655
Si–Al–O–N Osborne [334] Lumby <i>et al.</i> [335]		- 3.09-3.16 s cm ⁻²	s S	1227–1370 1227	77 77	g	Air -	V	11	1	1 1
Seltzer [336] Birch and Wilchire [337]	Various	95	I I	1250-1475 1277-1390	14-275 150-400	т,с с	Air, N ₂ , Vac. Air	A A	1.7-2. 2.1-2.4	1	390, 635 730–850
Karunarathe	1% MgO or MgO/Mn O	I	1	1200-1300	44-77	В	Air	A	1.0-1.6	I	495, 830
Lewis et al. [339]	Various	I	i	1300-1350	50-250	C	I	ļ	0.8-1.5	ţ	350835

TABLE AIII Con	tinued										
Reference	Experimental co	onditions						Experime	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
SiC											
Farnsworth and Coble [340]	~ 2.5%	+66	2.6	1900 - 2200	I	CSR	Ar	Ъ,	~1	I	305
Rumsey and Roberts [341]	I	l	ł	RT-1200	ļ	В	1	Υ	ţ	I	I
Francis and	2.5%	9599	9.8–27.7	1975–2120	5.7-143	CSR	Ar	Ч	~ 1	~ 3	305
Marshall and	< 1000	92	10	1000 - 1200	207-496	в	Air	A	1-2	I	230
Osborne [334]	1	66-96	I	1227 - 1370	77	в	Air	V	I	I	Ι
Seltzer [336]	I	I	1	1250-1475	55-344	T,C	Air, N ₂ , Vac.	A	6.0	I	1
Krishnamachari and Notic [344]	Various	97	65	1300 - 1400	34.47-86.19	в	Air	A	0.9	I	145
Djemel <i>et al.</i> [345]	ł	94-96	3.5-5	1300–1500	500-700	C	Ar	A	1	I	170-300
Si_3N_4											
Glenny and Taylor [346]	Various	(a) 59-82 (b) 94-~100		1200_	28	CSR	ł	1	l	ł	1
Engel and Thümmler [347]	~ 2%	64-73	I	1200–1400	20-60	, B	Air	I	I	I	I
Kossowsky 13481	$1\!-\!2.5\%$	~ 100	~ 1	1149-1260	35-100	Т	Ar, Air	A	2	1	I
Mangels [349] Washburn and Baumgartner	1.3–1.5% –	72–74	1	1093–1282 1260	7-140 140	B	Air 	A A	1.2–2.0 _	11	1
[350] Mazidiyasni and	$2.5\% \mathrm{Ce_2O_3}$	6,99-99	ł	1250-1400	70	В	Air	1	1	ł	Ι
Cooke [351] Kossowsky	0.05-2%	~ 100	~1	1149–1315	30-115	Т	He, Air	A	2^{-3}	- 51	0, 545–630
<i>et al.</i> [352] Din and	3%	98	Duplex	1200 - 1400	55-172	В	Air	A	1.7	1	590
Nicholson [353] Din and Nicholson [354]	1.2%	74–85	0.55 -	1200-1450	7-138	В	Air	A	1.4	I	545

TABLE AIII Con	ntinued										
Reference	Experimental co	onditions						Experime	intal results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	T est technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, <i>Q</i> (kJ mol ⁻¹)
Engel et al. [355]	22%	64-67		1200 - 1400	20-60	B	Air		L	1	
Grathwohl and	~ 2%	66-75	Ì	1200 - 1400	34 - 70	В	Air, Vac.	A	I	I	ł
Thümmler [356]	+ 1.5% MgO										
Lenoe and Quinn [357]	Ι	I	1	1350	7-51	T, Torsion	0,	I	1		1
Thümmler et al. [358]	~ 2%	~ 70	i	1200-1400	34-70	В	Air, Vac.	V	ł	ŀ	I
Engel et al. [359]	Various	98	1	1200-1400	20–45	В	Air	Α	2.1-3.3	I	460-710
Iskoe <i>et a</i> l. [360]	2000–3000 + 5% MgO, 0–0.2% CaO	> 98.5	ļ	1400	103	в	I	A	1	1	1
Grathwohl et al. [361]	Ι	6680	-	1300-1350	40	В	Air	A	I	1	I
Birch et al. [307]	ł	85	١	1550-1650	160-400	C	Air, Ar	¥	2.3	I	650
Mangels [362]	1.7%	I	١	1260-1316	20 - 200	CSR	Air	1	1	1	1
Seltzer [336] Birch and	1 1	-81 - 100	1 1	1250–1475 –	13.8 - 275 150 - 400	т, с с	Air, N ₂ , Vac. Air	V V	1.3-2.0 2.1-2.4	1 1	700 650
Wilshire [337] Birch et al. [363]	2% MeO	81 - 100	I	1400	200-400	C. T	Air. N.	V	2.3	1	650
Grathwohl and Thümmler [364]	Various	6880	I	1300-1350	21-70	B	Air, Vac.	V	~ 2	I	I
Grathwohl et al. [365]	Various	68-80	ļ	1300–1450	40 - 100	В	Air	1	ì	Į	I
Talty and Dirks [366]	1	I	I	1250-1300	65-250	В	Air	V	3	ł	1
Lange <i>et al.</i> [367]	< 200 Ca	~ 100	1	1260	100 - 170	T	Air	Υ	ł	I	1
Dixon-Stubbs and Wilshire [368]	$2\% \mathrm{Y}_2\mathrm{O}_3$	I	1	1350	200-400	C	I	A	2.1–2.3	ļ	650
Grathwohl and Thümmler [369]	Various	6781	i	1300–1500	50-100	В	Air	A	1.7-1.8	ł	360–390
Lange et al. [370]	Various	Į	I	1400	50-700	C	Air	A	5	I	ł

TABLE AIII Con	tinued										
Reference	Experimental cc	onditions						Experime	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Lange <i>et al.</i> [371]	Various	ł	i	1400	350	c	Air				
Lange et al.	Various	I	I	1400	50-500	С	Air	Α	1, 2	I	I
Arons and Tien	Various	~ 100	0.2 - 11.5	1177-1260	68.9-103.3	T	I	Α	4.1, 1.7	I	400850
Palm and Greskovich	5-7% BeSiN ₂	98–99	0.8	1250-1500	20-125	В	Air	I	1.1 - 2.0	Ι	540-750
l 3 /4] Cohrt <i>et al.</i> [375] Clarke [376]	1 1		!	1300 - 1400 1400	100 -	C B	Air Air	11	ļļ	1	1
SrZrO ₃ Nemeth <i>et al.</i> [377]	1.35% Fe ₂ O ₃	66 ~	0.45-2.04	1160–1275	5.3-21	В	Air	A	ω	1	710
TaC Johansen and	2000	9095	ł	1750–2300	70-170	В	Ar	I	ł	I	I
Kelly and Boundiffe [200]	Ι	83.6-100	I	1600-2300	10-430	CSR	Ar	I	١	an a	I
Becher [379]	Ι	~ 93	13	1280 - 1640	200 - 700	CSR	I	I	4.5, 13	I	90, 96
ThO ₂ Morgan and Hall	I	97–98	10	1465	55	C	Air	I	ł	I	ł
Potest and Yust	100	97.5	10	1400 - 1800	27-76	CSR	Neutral	I	1.0-1.6	I	470
2011 Poteat and Yust [181]	1	97.5	10	1430–1770	13-103	CSR	Neutral	, 	1,5	Ι	ł
ThO ₂ -CaO Morgan and Hall [380]	350	97–98	4-20	14001465	3.3–55	U	I	A	ł	I	I
TiC Keihn and Kebler [382]	1900	100	300	1638-1809	48–55	Г	Vac.	А	١	i	520-730

TABLE AIII Cor	ntinued										
Reference	Experimental co	onditions						Experim	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (μm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, <i>n</i>	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Kelly and Demolistic 12201	1	83.6-100	l	1600-2300	10-430	CSR	Ar	1	ŀ	1	1
Spivak et al.	l	I	43-750	2000-2650	I	I	I	I	1, 3-4	2, 0	380600
[505] Chermant <i>et al.</i> [384]	I	I	7	1400–2000	1	CSR	Vac.	ß	2.7-3.5	I	485-725
TiO Vere and Smallman [152]	300	1	1000	1000-1250	I	CSR	Vac.	I	I	I	I
UC Chang [385] Chang <i>et al</i> .	- 110	$^{-}$ 100	300-400 350	1500 - 1900 1500 - 1900	4–18	CSR CSR	Vac. Vac.	ŭ	S	11	155 155
Norreys and	I	Ι	ł	1200-1500	40-43	C	Vac.	V	I	I	I
wuceter [300] Norreys [387] Carniglia [388]	1 1	1 1	300 "Coarse"	1000 - 1500 1500 - 2000	$14-55 \\ 6-35$	с CSR	Vac. Vac.	A -	1.8 5	⊧ 1	205 155
Accary et al.	1	I	ł	1600 - 2300	I	C	Vac.	A	ł	I	I
Magnier <i>et al.</i>	I	ł	I	1600-2300	26.5-41.3	C	Vac.	A	I	I	Ι
Stellrecht et al.	I	I	I	1200 - 1600	2069	U	Vac.	Α	з	ł	375
Killey [392] Killey et al.	- 0-1000 Ni	- 95	150 5-150	900-1100 900-1300	28–55 7–60	υυ	Vac. Vac., Air	AA	1 2.1	1 1	190 120–215
Routbort [394] Seltzer <i>et al.</i>	– Various	99.5 75	{	700-1600 1400-1550	4.5-28	CSR C	He Vac.	1	4–30 2,1.6		_ 170-205
Seltzer <i>et al.</i>	Various	98	200	1400 - 1700	7–69	c	Vac.	1	36	, 1	445
Guerin et al. 13971	I	90–94	5-25	20 - 1700	24-156	CSR	Vac.	Ц	5.8	: ;	460
Burton [398]	I	ł	1	I	I	1	I	ŀ	1	i	360

Reference	Experimental c	onditions						Experime	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (μm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
UC _{1 .5} Kurasawa [399]	1	96.8	ł	1200-1400	20.7–103.5	υ	Vac.	1	1.2, 2.8	I	170
UC ₂ Kurasawa and Kikuchi [400]	Various	06	ł	1200-1400	13.8-103.4	C	Vac.	ł	0.9, 4.5	I	40-120
UC-PuC Killey <i>et al.</i>	ł	94–99	8-40	1000-1150	3-25	С	Vac., Ar	I	1	I	I
ر دود] Tokar [401]	2000	86–92	20 - 30	1300-1500	1441	C	Vac.	A	2.4	ł	530
UC–UN Uchida and Ichikawa [402]	1	16	6-26	1310-1500	14-74	C	Vac.	A	14	I	1
UC-ZrC Seltzer <i>et al.</i>	4% W	75-85	ł	1400-1550	4.528	C	Vac.	ļ	1.4–2.3	J	200–335
[396] Seltzer <i>et al.</i> [396]	4% W	~ 100	i	14-1700	30–65	C	Vac.	I	1.8	I	650
UN Vandervoort <i>et al.</i> [403]	",bure"	I	130-2000	1500-1800	1434	CSR	N_2	I	5.3-6.4	0	315
UN-UO ₂ Brucklacher and Dienst [404]	1	89	6-10	700850	39.2	C	i	· 1	I	1	I
UO ₂ Scott <i>et al.</i> [405] Armstrong <i>et al.</i> [406]	< 200	95 94.5–98	2-10 (a) 6 (b) 13_40	8601650 (a) 1250 (b) 1400	5.5-44.8 (a) 28-111 (b) 78-90	BB	H ₂ , Ar H ₂	- V	1-4	2,0	270–400 380
Armstrong and	i	96	9	975-1300	6.9-48.2 6.0-707	В	Ar/O_2	I	1	I	235–265
Armstrong and Irvine [408]	Various	66-96	0 10-31	1200–1450	13.8-96.5	В	H_2	A	1	1	235-545

ed
ontinu
II Cé
EAI
BL

TABLE AIII Con	tinued										
Reference	Experimental co	onditions						Experim	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (μm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Wolfe and		97.5-98.5	18-55	1600-2000	6.89–39.4	U	1	Α	1.0-4.8		300
Byron [410] Byron [410] Poteat and Yust	100	97 97.5	$\frac{18.6}{\sim 10},$	600-2000 1430-1666	13.8-75.8	CSR CSR	Ar/O ₂ -	۲ <u>ـ</u>	- 1,5		210 _
1 1 0 1] Bohaboy <i>et al.</i> [411]	< 200	92—98	coarse 4 – 35	1400 - 1760	6.9-105	C	${\rm H_2}$	A	1.0, 4.5	5	375, 555
Nadeau [164] Bohaboy and Evone [412]	- < 200	95 8995	4 22–25	900-1600 1475-1625	- 6.2-55.1	CSR. C	CO/CO ₂ H ₂ /H ₂ O	- V		1	_ 460, 590
Marples and	ų	9499	10 - 80	1150-1500	13.8-48.2	C	$O_{2}H_{2}/H_{2}O_{2}H_{2}$	A	1.5-7.0	1	390585
Seltzer et al.	l	95–99	555	1430 - 2000	6.9–68.9	C	C, B	Ι	ł	1, 4.5	Ι
Canon et al.	< 300	76	8-31	500-1800	20-140	CSR	Vac.	ц	4.2	I	345365
Roberts [416] Perrin [417]	< 200 -	- 86	9 27	1320 - 1800 1030 - 1190	20-200 10.3-27.6	B C	Vac. H.		'	1	385410
Roberts and	300	8897	0.6-8	$RT{-1700}$	1	CSR	He	Ľ.	1.9-2.3	l	505
Langdon [419] Brucklacher and Dienst [404]	1 1	97.5 96	$\begin{array}{c} 10\\ 10-35 \end{array}$	1430 - 1660 250 - 850	$14-70 \\ 0-40$	00	í l	! 1	1.0, 4.5 1	1 1	!
Seltzer <i>et al.</i> [420]	350	97.8	27	1100 1300	1-50	C	co/co2	ł	1-7	1	220-490
Roberts and	< 600	84–95	12-17	500-1600		1	I	I	ł	ł	375-420
Burton and Bernolds [422]	I	16	L	1250-1450	8-150	C, CSR	H_2/Ar	ł	1, ~5	ł	320
Burton et al.	I	67	7-50	1150-1450	8-150	C, CSR	H_2/Ar	ł	1, ~ 5	I	I
Burton and Revnolds [424]	I	76	7	1250 - 1400	4 - 100	C, CSR	co/co1	1	$1,\sim 5$	1	225-380
Solomon [425]	620	96	22	81-191	14.5-20	Ŧ	I	Α, D	1	I	I

TABLE AIII COI	ntinued										
Reference	Experimental c	onditions						Experime	ental results		
1	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (μm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q (kJ mol ⁻¹)
Roberts [426]	4001400	26-96	8-31	1400-1800	2.5-150	Stress	Vac.	I	1.3, 4.5-20	ŀ	385
Burton and Reveales [477]	I	I	t	1050-1400	5 - 20	C, CSR	ł	Ι		1	I
Solomon [428] Reynolds <i>et al.</i>	620	96 76	22 755	100 - 1500 1450	6.2 - 20 10 - 80	T C, CSR	- CO/CO₂	A –	I	1	
[429] Burton and	1	76	L~	1250-1500	4-150	C	H_2 ,	I	$1, \sim 5$	~1	380, 240
Reynous [430] Radford and Terwilliger [431]	<146	82.5-96.5	1 - 17	600-1600	50800	CSR	CO/CO ₂ , CO/CO ₂ , Air	E, F	10–32	I	920
Burton [432]	I	- 05	7-18	1250-1800	5-100		TU	1	1 1 4 3		- 80_120
Assmann [434]] [87.5-92.7	$10^{-1.5}$	1300-1560	40-100	ט ט	- Vac.	V	4.5	ł	590
Singh [435]	I	76-96	20 - 44	1800 - 2000	1	CSR	I	I	I	I	I
Chung and	Various	9597	2 - 10	1000 - 1600	4-60	С	H_2/H_2O	A	1	2–3	250-350
Chung and	Various	I	2 - 10	1200 - 1400	450	C	$O_2 H_2/H$	A	1,4	2–3	250-350
Chung and	ł	I	2-10	1377–1477	4-50	C	H_2/H_2O	I	Ι	Ι	Ι
Davies [438] Ainscough <i>et al.</i>	4000 Nb_2O_5	98	4045	1300 - 1500	540	B,C	O ₂ H ₂ H	Α	1.0, 2.4	I	225-425
[4.39] Sawbridge <i>et al.</i> [440]	Various	I	12-43	1150-1300	680	C	Ar	I	1	I	213-445
UO ₂ -PuO ₂ Houston <i>et al.</i>	I	94	3-15	1100-1500	7.6-17	C	Vac.	A	1.4	7	325
Bohaboy and	< 200	93	22-28	1550	6.9-41.3	C	$O_2 H_2/H$	Α	I	I	ī
Perrin [442] Routbort <i>et al.</i>	- < 300	95 97	3-5 6.4-12.7	910–1125 1300–1700	13.8 6.9–110	00	He H ₂ /H ₂ O	- A		7	300-560
[445] Routbort and Voglewede [444]	150-800	95	544	1500-1600	1	U	***	A	4.4	I	440-755

TABLE AIII Con	itinued										
Reference	Experimental co	onditions						Experime	ntal results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, <i>Q</i> (kJ mol ⁻¹)
Brucklacher	Į	9698	10	300-980	14.7-39.2	U	મં	A	1	1	J
[442] Javed [433] Assmann [434] Dienst [446]	1 1	95 88–95 86,93 . 5	1013 >10 -	$\frac{1400-1700}{1500}$ 300-1000	6.9-82.8 40-100 15-40	000	Vac.	1 V I	1.0, 4.3 2.1-3.4 ~ 1	1 1 1	75,130 130–155 220
WC Atkins and	ł	66	1	RT-1550	I	Indentation	Vac.	ţ	1	ł	460
Tabor [108] Atkins et al.	l	66	l	RT1550	ł	Indentation	Vac.	ł	1	ł	I
Kelly and	1	83.6-100	Ι	1600 - 2300	10 - 430	CSR	Ar	1	1	ı	Ι
Kowclitte [329] Ueda <i>et al.</i> [447] Doi <i>et al.</i> [448]	10% Co or TaC 10% Co or 10% To or	ļ Ì	1-3 1-3	750950 800900	50-300 100-250	ΤΤ	Vac. Vac.	A A	2.9–5.9 3.1–4.7	1.5-2.6 1.5-2.8	290—440 290—405
Ueda <i>et al</i> . [449]	10% 1åC– 10% Co 6–20% Co	I	1-3	RT-1000	I	CSR	Ar	ტ	1	I	ţ
ZrC Chang <i>et al</i> .	I	I	1	1700-2000	I	CSR	Vac.	1	I	ļ	580
[188] Leipold and	1%	100	I	1800-2600	2.5-34.4	T	He	V	ŝ	ļ	315840
Nielson [450] Zubarev and Dement'yev	1	1	I	2200-3000	78-205	Т	i	1	2.5	ļ	750
[451] Miloserdin <i>et al.</i>	4000	93	3-5	2180-2540	3.5-18	Н	I	V	I	ł	530
Dement'yev	- 1	9597	6-45	2200-2700	5-70	C	Neutral	ł	1.0, 3.4	1.0, 0	069
Darolia and	Various	Ι	Ι	1700 - 1800	l	CSR	Vac.	G	I	I	1
Archoold [454] Darolia and Archbold [455]	400	~ 100	250	12001800	ł	CSR	Vac.	E, G	1	ł	500

IABLE AILI CON	unuea										
Reference	Experimental cc	onditions						Experim	ental results		
	Total metallic impurities or dopant (ppm or %)	Density (% theoretical)	Grain size (µm)	Test temperature (° C)	Applied stress (MPa)	Test technique	Atmosphere	Type of creep curve	Stress exponent, n	Grain size exponent, <i>p</i>	Activation energy, Q ($k J mol^{-1}$)
Zubarev and	Various	95-97	3-20	2200-2750	. 2-75	F	Ar	C	1	I	1
Zubarev and Shmelev [457]	Various	95–97	5-20	2200–2750	1-75	Т	Ar	I	1.0, 2.7 - 3.1		710-750
ZrC–NbC Avgustinik et al. [458]	< 1%	I	9–15	2327-2877	14.7–53.9	C	Vac.	A	1.1-1.2	Į	790490
ZrO ₂ Stavrolakis and	5%	I	I	1300	25	Torsion	I	¥	I	٢	1
Bakunov <i>et al.</i>	5000	94.7	40	1700 - 1820	1.4	В	Vac.	ł	I	***	750
L 74] Evans [459] Fehrenbacher	Various ~ 1%	- 95	0.6 - 10 10 - 20	1163 - 1535 1400 - 1535	4.1 - 71 5.5 - 52	00	Air Air	A A	$^{-1,6}_{\sim 1}$	~ 1	360, 210 460
<i>et al.</i> [460] St-Jacques and	ŀ	5.99	7-29	1200-1400	3.4–27	c c	Air, Vac.	: 1	~	1	395
Angers [461] St-Jacques and	1.2%	3.99	7–29	1200 - 1400	3.4-27	C	Air	ł	1	1	380-415
Angers [402] Seltzer and Talty 1421	> 1%	91.9-93.1	12.5-72	1480–1995	0.7-43	C	Air, Vac., Ar	I	1.5 - 3.0	١	535
Seltzer and Talty [464]	>1%	73	I	1647–1882	2-20	U	Air, Vac., Ar	1	3.2	١	535
ZrO ₂ -CaO Vishnevskii et al. [465]	1	96	15-20	1550-2000	2-50	В	Vac.		1.1	1	420

-

Acta Metall. 25 (1977) 25.

- 31. J. CADOZ, D. HOKIM, M. MEYER and J. P. RIVIÈRE, *Rev. Phys. Appl.* 12 (1977) 473.
- 32. J. CADOZ, J. CASTAING and J. PHILIBERT, "Electron Microscopy 1978", Vol. 1 (Microscopical Society of Canada, Toronto, 1978) p. 606.
- 33. J. P. RIVIÈRE, J. CADOZ and J. PHILIBERT, "Electron Microscopy 1980", Vol. 1, edited by P. Brederoo and G. Boom (Seventh European Congress on Electron Microscopy Foundation, Leiden, The Netherlands, 1980) p. 410.
- 34. J. CADOZ, J. CASTAING, P. VEYSSIÈRE and G. FAIVRE, "Electron Microscopy 1980", Vol. 4, edited by P. Brederoo and G. Boom (Seventh European Congress on Electron Microscopy Foundation, Leiden, The Netherlands, 1980) p. 408.
- 35. D. M. KOTCHICK and R. E. TRESSLER, J. Amer. Ceram. Soc. 63 (1980) 429.
- 36. J. CADOZ, J. CASTAING and J. PHILIBERT, *Rev. Phys. Appl.* 16 (1981) 135.
- 37. J. CASTAING, J. CADOZ and S. H. KIRBY, J. *Physique, Colloque C3* **42** (1981) C3-43.
- 38. H. PALMOUR, Proc. Brit. Ceram. Soc. 6 (1966) 209.
- 39. M. H. LEWIS, Phil. Mag. 17 (1968) 481.
- 40. N. DOUKHAN, R. DUCLOS and B. ESCAIG, J. Physique, Colloque C9 34 (1973) C9-379.
- 41. L. HWANG, A. H. HEUER and T. E. MITCHELL, "Deformation of Ceramic Materials", edited by R. C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 257.
- 42. T. E. MITCHELL, L. HWANG and A. H. HEUER, J. Mater. Sci. 11 (1976) 264.
- 43. N. DOUKHAN, R. DUCLOS and B. ESCAIG, J. Physique, Colloque C7 37 (1976) C7-566.
- 44. R. DUCLOS, N. DOUKHAN and B. ESCAIG, J. Mater. Sci. 13 (1978) 1740.
- 45. R. DUCLOS, J. Physique Lett. 40 (1979) L-109.
- 46, R. DUCLOS and J. CRAMPON, Mém. Sci. Rev. Mét. 77 (1980) 151.
- 47. R. DUCLOS, J. Physique, Colloque C3 42 (1981) C3-49.
- 48. P. C. DOKKO, J. A. PASK and K. S. MAZDIYASNI, J. Amer. Ceram. Soc. 60 (1977) 150.
- 49. D. MENARD, J. C. DOUKHAN and J. PAQUET, Bull. Minéral. 102 (1979) 159.
- 50. W. L. PHILLIPS, J. Amer. Ceram. Soc. 44 (1961) 499.
- 51. A. A. URUSOVSKAYA and V. G. GOVORKOV, Kristall. 10 (1965) 525.
- 52. P. FELTHAM and R. GHOSH, Phys. Stat. Sol. (a) 5 (1971) 279.
- 53. E. L. HALL and J. B. VANDER SANDE, J. Amer. Ceram. Soc. 61 (1978) 417.
- 54. A. H. CLAUER, M. S. SELTZER and B. A. WILCOX, "Quantitative Relation Between Properties and Microstructure", edited by D. G. Brandon and A. Rosen (Israel Universities Press, Jerusalem, 1969) p. 377.
- 55. Idem, J. Mater. Sci. 6 (1971) 1379.
- 56. V. KRISHNAMACHARI and J. T. JONES, J. Amer. Ceram. Soc. 57 (1974) 506.
- 57. V. KRISHNAMACHARI, J. Mater. Sci. 11 (1976) 1031.

- 58. V. KRISHNAMACHARI, M. R. NOTIS and D. M. SHAH, *ibid.* 12 (1977) 666.
- 59. V. W. NEHRING, J. R. SMYTH and T. D. McGEE, J. Amer. Ceram. Soc. 60 (1977) 328.
- 60. V. W. NEHRING and J. R. SMYTH, *ibid*. 60 (1977) 173.
- 61. J. CASTAING, M. SPENDEL, J. PHILIBERT, A. DOMINGUEZ-RODRIGUEZ and R. MÁRQUEZ, *Rev. Phys. Appl.* 15 (1980) 277.
- 62. J. L. ROUTBORT, J. Physique, Colloque C3 42 (1981) C3-59.
- 63. A. DOMINGUEZ-RODRIGUEZ, M. SANCHEZ, R. MÁRQUEZ, J. CASTAING and C. MONTY, *ibid.* 42 (1981) C3-67.
- 64. C. W. GRIFFIN and J. R. SMYTH, J. Mater. Sci. 14 (1979) 506.
- 65. R. D. SCHMIDT-WHITLEY, J. Amer. Ceram. Soc. 58 (1975) 337.
- 66. E. FRIES, C. MARHIC and T. BRETHEAU, J. Physique, Colloque C7 37 (1976) C7-572.
- 67. M. MARTINEZ-CLEMENTE, T. BRETHEAU and J. CASTAING, J. Physique 37 (1976) 895.
- 68. T. BRETHEAU, C. MARHIC, M. SPENDEL and J. CASTAING, *Phil. Mag.* 35 (1977) 1473.
- 69. T. BRETHEAU and C. DOLIN, J. Mater. Sci. 13 (1978) 587.
- 70. G. TORRES-VILLASEÑOR, R. BARRIO-PAREDES and S. V. RADCLIFFE, *ibid.* 13 (1978) 2164.
- 71. E. FRIES, A. AUDOUARD and T. BRETHEAU, *Rev. Phys. Appl.* **13** (1978) 489.
- 72. B. SIEBER, J. P. RIVIÈRE and J. CASTAING, Bull. Minéral. 102 (1979) 148.
- 73. T. BRETHEAU, B. PELLISSIER and B. SIEBER, Acta Metall. 29 (1981) 1617.
- 74. B. REPPICH, Phys. Stat. Sol. 20 (1967) 69.
- 75. G. T. BROWN, B. COCKAYNE and W. R. MacEWAN, J. Mater. Sci. 15 (1980) 1469.
- 76. J. MONTEMAYOR, R. GÓMEZ-RAMÍREZ and E. CARRILLO, *Phys. Stat. Sol. (a)* 38 (1976) 67.
- 77. P. YAVARI and T. G. LANGDON, "Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems", edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 295.
- 78. YA. E. GEGUZIN, V. L. RABETS and A. A. CHERNYSHOV, Fiz. Tverd. Tela 5 (1963) 1900.
- 79. J. J. GILMAN, Acta Metall. 7 (1959) 608.
- 80. W. L. PHILLIPS, Trans. Metall. Soc. AIME 218 (1960) 939.
- 81. Idem, ibid. 224 (1962) 434.
- 82. D. W. BUDWORTH and J. A. PASK, J. Amer. Ceram. Soc. 46 (1963) 560.
- 83. R. B. DAY and W. A. JOHNSTON, *ibid.* 52 (1969) 595.
- 84. H. L. FOTEDAR and T. G. STOEBE, *Phil. Mag.* 23 (1971) 859.
- 85. D. BROWN, G. CHAUDHRI and P. FELTHAM, *ibid.* 24 (1971) 213.
- 86. B. REPPICH, J. Mater. Sci. 6 (1971) 267.
- 87. W. A. COGHLAN, R. A. MENEZES and W. D. NIX, *Phil. Mag.* 23 (1971) 1515.
- 88. R. A. MENEZES and W. D. NIX, Acta Metall. 19 (1971) 645.
- 89. C. V. S. H. NARAYAN RAO and A. L. RUOFF, J.

Appl. Phys. 43 (1972) 1437.

- 90. B. REPPICH, Acta Metall. 20 (1972) 557.
- 91. Idem, Scripta Metall. 6 (1972) 1.
- 92. G. STREB and B. REPPICH, *Phys. Stat. Sol. (a)* 16 (1973) 493.
- 93. B. REPPICH and G. STREB, ibid. 15 (1973) 77.
- 94. D. BROWN, P. FELTHAM and R. PHILLIMORE, *ibid.* 18 (1973) 203.
- 95. R. A. MENEZES and W. D. NIX, Phil. Mag. 27 (1973) 1201.
- 96. D. R. CROPPER and J. A. PASK, *ibid.* 27 (1973) 1105.
- 97. A. L. RUOFF and C. V. S. NARAYAN RAO, J. Amer. Ceram. Soc. 58 (1975) 503.
- 98. E. C. YU and J. C. M. LI, Phil. Mag. 36 (1977) 811.
- 99. C. O. HULSE and J. A. PASK, J. Amer. Ceram. Soc. 43 (1960) 373.
- 100. R. L. CUMMEROW, J. Appl. Phys. 34 (1963) 1724.
- 101. A. S. NEIMAN and W. S. ROTHWELL, *Appl. Phys. Lett.* **3** (1963) 160.
- 102. C. O. HULSE, S. M. COPLEY and J. A. PASK, J. Amer. Ceram. Soc. 46 (1963) 317.
- 103. R. J. STOKES and C. H. LI, Disc. Faraday Soc. 38 (1964) 233.
- 104. R. B. DAY and R. J. STOKES, J. Amer. Ceram. Soc. 47 (1964) 493.
- 105. S. M. COPLEY and J. A. PASK, ibid. 48 (1965) 139.
- 106. W. S. ROTHWELL and A. S. NEIMAN, J. Appl. Phys. 36 (1965) 2309.
- 107. A. G. ATKINS, A. SILVÉRIO and D. TABOR, J. Inst. Met. 94 (1966) 369.
- 108. A. G. ATKINS and D. TABOR, Proc. Roy. Soc. A 292 (1966) 441.
- 109. R. B. DAY and R. J. STOKES, J. Amer. Ceram. Soc. 49 (1966) 72.
- 110. A. G. ATKINS and D. TABOR, *ibid.* 50 (1967) 195.
- 111. R. B. DAY and R. J. STOKES, ibid. 50 (1967) 445.
- 112. C. O. HULSE, "Anisotropy in Single-Crystal Refractory Compounds", Vol. 2, edited by F. W. Vahldiek and S. A. Mersol (Plenum, New York, 1968) p. 307.
- 113. R. B. DAY and R. J. STOKES, "Anisotropy in Single-Crystal Refractory Compounds", Vol. 2, edited by F. W. Vahldiek and S. A. Mersol (Plenum, New York, 1968) p. 267.
- 114. D. R. CROPPER and J. A. PASK, Bull. Amer. Ceram. Soc. 48 (1969) 555.
- 115. R. L. MOON and P. L. PRATT, Proc. Brit. Ceram. Soc. 15 (1970) 203.
- 116. W. HÜTHER and B. REPPICH, Phil. Mag. 28 (1973) 363.
- 117. J. M. BIRCH and B. WILSHIRE, *ibid.* **30** (1974) 1023.
- 118. B. REPPICH and W. HÜTHER, ibid. 30 (1974) 1009.
- 119. B. ILSCHNER and B. REPPICH, "Defects and Transport in Oxides", edited by M.S. Seltzer and R.I. Jaffee (Plenum, New York, 1974) p. 425.
- 120. J. M. BIRCH and B. WILSHIRE, *Phil. Mag.* 31 (1975) 1421.
- 121. Idem, Proc. Brit. Ceram. Soc. 25 (1975) 127.
- 122. A. H. CLAUER and B. A. WILCOX, J. Amer. Ceram. Soc. 59 (1976) 89.
- 123. A. H. CLAUER, M. S. SELTZER and B. A. WILCOX, *ibid.* **62** (1979) 85.

- 124. P. C. DOKKO and J. A. PASK, ibid. 62 (1979) 433.
- 125. J. L. ROUTBORT, Acta Metall. 27 (1979) 649.
- 126. P. J. DIXON-STUBBS and B. WILSHIRE, Trans. Brit. Ceram. Soc. 79 (1980) 21.
- 127. B. ILSCHNER and B. REPPICH, Phys. Stat. Sol. 8 (1963) 2093.
- 128. J. HESSE, ibid. 9 (1965) 209.
- 129. W. BLUM and B. ILSCHNER, ibid. 20 (1967) 629.
- 130. F. SCHUH, W. BLUM and B. ILSCHNER, Proc. Brit. Ceram. Soc. 15 (1970) 143.
- 131. N. L. CARTER and H. C. HEARD, Amer. J. Sci. 269 (1970) 193.
- 132. U. MESSERSCHMIDT, "Science of Ceramics", Vol. 5, edited by C. Brosset and E. Knopp (Swedish Institute for Silicate Research, Gothenburg, Sweden, 1970) p. 319.
- 133. J. P. POIRIER, Phil. Mag. 26 (1972) 701.
- 134. Idem, ibid. 26 (1972) 713.
- 135. W. BLUM, ibid. 28 (1973) 245.
- 136. V. PONTIKIS and J. P. POIRIER, "Proceedings of the 4th International Conference on the Strength of Metals and Alloys", Vol. 1 (Laboratoire de Physique du Solide, E. N. S. M. I. M., Nancy, France, 1976) p. 329.
- 137. M. GUILLOPÉ and J. P. POIRIER, J. Geophys. Res. 84 (1979) 5557.
- 138. G. EGGELER and W. BLUM, *Phil Mag. A* 44 (1981) 1065.
- 139. W. S. WILLIAMS, J. Appl. Phys. 35 (1964) 1329.
- 140. L. N. DEMENT'YEV, P. V. ZUBAREV, V. N. KRUGLOV, V. N. TURCHIN and YE. D. KHAR-KHADIN, *Fiz. Met. Metalloved.* **46** (1978) 620.
- 141. A. DOMINGUEZ-RODRIGUEZ and J. CASTAING, Compt. Rend. Acad. Sci. Paris 280B (1975) 317.
- 142. Idem, Rev. Phys. Appl. 11 (1976) 387.
- 143. A. DOMINGUEZ-RODRIGUEZ, J. CASTAING and J. PHILIBERT, *Mater. Sci. Eng.* 27 (1977) 217.
- 144. J. CABRERA-CAÑO, A. DOMINGUEZ-RODRIGUEZ, R. MÁRQUEZ and J. CASTAING, J. Phys. Lett. 39 (1978) L-451.
- 145. J. CABRERA-CAÑO, J. CASTAING, A. DOMINGUEZ-RODRIGUEZ and R. MÁRQUEZ, *Res. Mechanica* 1 (1980) 289.
- 146. P. VEYSSIÈRE, J. RABIER, H. GAREM and J. GRILHÉ, J. Physique, Colloque C7 37 (1976) C7-586.
- 147. M. S. SELTZER, Trans. Met. Soc. AIME 239 (1967) 650.
- 148. Idem, J. Appl. Phys. 39 (1968) 2869.
- 149. T. HIRAI and K. NIIHARA, J. Mater. Sci. 14 (1979) 2253.
- 150. W. S. WILLIAMS and R. D. SCHAAL, J. Appl. Phys. 33 (1962) 955.
- 151. G. E. HOLLOX and R. E. SMALLMAN, *ibid.* 37 (1966) 818.
- 152. A. W. VERE and R. E. SMALLMAN, *Mater. Sci.* Eng. 5 (1969/70) 279.
- 153. K. H. G. ASHBEE and R. E. SMALLMAN, Proc. Roy. Soc. A 274 (1963) 195.
- 154. Idem, J. Amer. Ceram. Soc. 46 (1963) 211.
- 155. W. M. HIRTH and J. O. BRITTAIN, *ibid.* **46** (1963) 411.
- 156. N. E. FARB, O. W. JOHNSON and P. GIBBS, J.

Appl. Phys. 36 (1965) 1746.

- 157. H. BELL, V. KRISHNAMACHARI and J. T. JONES, J. Amer. Ceram. Soc. 54 (1971) 359.
- 158. Idem, ibid. 55 (1972) 6.
- 159. V. KRISHNAMACHARI, J. T. JONES and H. BELL, *ibid.* 56 (1973) 48.
- 160. Idem ibid. 56 (1973) 604.
- 161. M. G. BLANCHIN and P. FAISANT, *Rev. Phys. Appl.* **14** (1979) 619.
- 162. M. G. BLANCHIN, G. FONTAINE and L. P. KUBIN, *Phil. Mag. A* 41 (1980) 261.
- 163. W. M. ARMSTRONG, A. R. CAUSEY and W. R. STURROCK, J. Nucl. Mater. 19 (1966) 42.
- 164. J. S. NADEAU, J. Amer. Ceram. Soc. 52 (1969) 1.
- 165. P. T. SAWBRIDGE and E. C. SYKES, *Phil. Mag.* 24 (1971) 33.
- 166. M. S. SELTZER, A. H. CLAUER and B. A. WILCOX, *J. Amer. Ceram. Soc.* 44 (1972) 43.
- 167. B. L. MORDIKE, J. Nucl. Mater. 60 (1976) 223.
- 168. A. ALAMO, J. M. LEFEBVRE and J. SOULLARD, *ibid.* 75 (1978) 145.
- 169. G. E. HOLLOX and J. D. VENABLES, Trans. Japan Inst. Met. Suppl. 9 (1968) 295.
- 170. R. J. GABORIAUD, Bull. Minéral. 102 (1979) 155.
- 171. Idem, Phil. Mag. A 44 (1981) 561.
- 172. J. RABIER, P. VEYSSIÈRE, H. GAREM and J. GRILHÉ, *ibid.* **39** (1979) 693.
- 173. D. W. LEE and J. S. HAGGERTY, J. Amer. Ceram. Soc. 52 (1969) 641.
- 174. P.V. ZUBAREV and L.N. DEMENT'YEV, Problemy Prochnosti 3 (9) (1971) 47.
- 175. M. P. DAVIS and H. PALMOUR, "The Role of Grain Boundaries and Surfaces in Ceramics", edited by W. W. Kriegel and H. Palmour (Plenum, New York, 1966) p. 265.
- 176. R. L. BERTOLOTTI, PhD dissertation, Department of Mining, Metallurgical and Ceramic Engineering, University of Washington, Seattle, Washington (1970).
- 177. P. F. BECHER and H. PALMOUR, J. Amer. Ceram. Soc. 53 (1970) 119.
- 178. M. A. ADAMS and G. T. MURRAY, J. Appl. Phys. 33 (1962) 2126.
- 179. G. T. MURRAY, J. SILGAILIS and A. J. MOUNT-VALA, J. Amer. Ceram. Soc. 47 (1964) 531.
- 180. A. J. MOUNTVALA and G. T. MURRAY, *Phil. Mag.* 13 (1966) 441.
- 181. L. E. POTEAT and C. S. YUST, "Ceramic Microstructures", edited by R. M. Fulrath and J. A. Pask (Wiley, New York, 1968) p. 646.
- 182. J. A. STAVROLAKIS and F. H. NORTON, J. Amer. Ceram. Soc. 33 (1950) 263.
- 183. R. L. COBLE and W. D. KINGERY, *ibid.* **39** (1956) 377.
- 184. R. CHANG, J. Nucl. Mater. 2 (1959) 174.
- 185. R. C. FOLWEILER, J. Appl. Phys. 32 (1961) 773.
- 186. S. I. WARSHAW and F. H. NORTON, J. Amer. Ceram. Soc. 45 (1962) 479.
- 187. E. K. BEAUCHAMP, G. S. BAKER and P. GIBBS, Rprt. No. ASD-TR 61-481, Wright-Patterson Air Force Base, Ohio (1962).
- 188. R. CHANG, G. G. BENTLE and F. E. EKSTROM, "Materials Science and Technology for Advanced

Applications", edited by D. R. Marsh (Prentice-Hall, Englewood Cliffs, New Jersey, 1962) p. 533. (Also in *Met. Eng. Q.* 3 (2) (1963) 36.)

- 189. R. L. COBLE and Y. H. GUERARD, J. Amer. Ceram. Soc. 46 (1963) 353.
- 190. W. DAWIHL and E. KLINGER, Ber. Deut. Keram. Ges. 42 (1965) 270.
- 191. G. M. FRYER and J. P. ROBERTS, Proc. Brit. Ceram. Soc. 6 (1966) 225.
- 192. E. M. PASSMORE and T. VASILOS, J. Amer. Ceram. Soc. 40 (1966) 166.
- 193. E. PASSMORE, A. MOSCHETTI and T. VASILOS, *Phil. Mag.* **13** (1966) 1157.
- 194. V. S. BAKUNOV, E. S. LUKIN and D. N. POLUBOYARINOV, Tr. Mosk. Khim.-Tekhnol. Inst. 50 (1966) 216.
- 195. C. W. HEWSON and W. D. KINGERY, J. Amer. Ceram. Soc. 50 (1967) 218.
- 196. L. J. TROSTEL, Bull. Amer. Ceram. Soc. 48 (1969) 601.
- 197. E. YA. SHAPIRO, V. S. BAKUNOV, V. A. KOCHETKOV, D. N. POLUBOYARINOV, A. A. MAIER and N. T. ANDRIANOV, *Tr. Mosk. Khim. Tekhnol. Inst.* 59 (1969) 133.
- 198. T. SUGITA and J. A. PASK, J. Amer. Ceram. Soc. 53 (1970) 609.
- 199. A. H. HEUER, R. M. CANNON and N. J. TIGHE, "Ultra Fine-Grain Ceramics", edited by J. J. Burke, N. L. Reed and V. Weiss (Syracuse University Press, Syracuse, New York, 1970) p. 339.
- 200. G. ENGELHARDT and F. THÜMMLER, Ber. Deut. Keram. Ges. 47 (1970) 571.
- 201. A. MOCELLIN and W. D. KINGERY, J. Amer. Ceram. Soc. 54 (1971) 339.
- 202. P. F. BECHER, "Ceramics in Severe Environments", edited by W. W. Kriegel and H. Palmour (Plenum, New York, 1971) p. 315.
- 203. I. I. VISHNEVSKII, E. I. AKSEL'ROD and N. D. TAL'YANSKAYA, Fiz. Tverd. Tela 13 (1971) 3446.
- 204. C. K. L. DAVIES and S. K. SINHA RAY, *J. Phys. E* 4 (1971) 421.
- 205. N. T. ANDRIANOV, E. S. LUKIN and D. N. POLUBOYARINOV, Tr. Mosk. Khim.-Tekhnol. Inst. 68 (1971) 106.
- 206. I. I. VISHNEVSKII, E. I. AKSEL'ROD and N. D. TAL'YANSKAYA, *Izvest. Akad. Nauk SSSR, Neorg. Materialy* 8 (1972) 1641.
- 207. G. M. FRYER and P. THOMPSON, Trans. Brit. Ceram. Soc. 71 (1972) 61.
- 208. C. K. L. DAVIES and S. K. SINHA RAY, "Special Ceramics", Vol. 5, edited by P. Popper (The British Ceramic Research Association, Stoke-on-Trent, UK, 1972) p. 193.
- 209. T. SUGITA and J. A. PASK, J. Amer. Ceram. Soc. 56 (1973) 403.
- 210. A. CROSBY and P. E. EVANS, J. Mater. Sci. 8 (1973) 1573.
- 211. G. W. HOLLENBERG and R. S. GORDON, J. Amer. Ceram. Soc. 56 (1973) 140.
- 212. A. CROSBY and P. E. EVANS, Canad. Metall. Q. 13 (1974) 297.
- 213. D. A. KROHN, P. A. URICK, D. P. H. HASSELMAN and T. G. LANGDON, J. Appl. Phys. 45 (1974)

3729.

- 214. P. A. LESSING and R. S. GORDON, "Deformation of Ceramic Materials", edited by R. C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 271.
- 215. C. K. L. DAVIES, "Physical Metallurgy of Reactor Fuel Elements", edited by J. E. Harris and E. C. Sykes (The Metals Society, London, 1975) p. 99.
- 216. P. A. LESSING, J. D. HODGE and R. S. GORDON, "Proceedings of the Second International Conference on Mechanical Behavior of Materials" (American Society for Metals, Metals Park, Ohio, 1976) p. 378.
- 217. W. R. CANNON and O. D. SHERBY, J. Amer. Ceram. Soc. 60 (1977) 44.
- 218. P. A. LESSING and R. S. GORDON, J. Mater. Sci. 12 (1977) 2291.
- 219. L. D. HOU, S. K. TIKU, H. A. WANG and F. A. KRÖGER, *ibid.* 14 (1979) 1877.
- 220. R. M. CANNON, W. H. RHODES and A. H. HEUER, J. Amer. Ceram. Soc. 63 (1980) 46.
- 221. A. H. HEUER, N. J. TIGHE and R. M. CANNON, *ibid.* 63 (1980) 53.
- 222. Y. IKUMA and R. S. GORDON, "Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems", edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 283.
- 223. M. M. EL-AIAT, L. D. HOU, S. K. TIKU, H. A. WANG and F. A. KRÖGER, *J. Amer. Ceram. Soc.* 64 (1981) 174.
- 224. J. R. PORTER, W. BLUMENTHAL and A. G. EVANS, "Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems", edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 249. (Also in Acta Metall. 29 (1981) 1899.)
- 225. C. O. HULSE and J. A. PASK, J. Amer. Ceram. Soc. 49 (1966) 312.
- 226. R. A. PENTY and D. P. H. HASSELMAN, *Mater. Res. Bull.* 7 (1972) 1117.
- 227. P. A. LESSING, R. S. GORDON and K. S. MAZDIY-ASNI, J. Amer. Ceram. Soc. 58 (1975) 149.
- 228. M. H. HODGE, W. R. BITLER and R. C. BRADT, *ibid.* 56 (1973) 497.
- 229. R. R. VANDERVOORT and W. L. BARMORE, *ibid.* 46 (1963) 180.
- 230. N. V. SHISHKOV, P. P. BUDNIKOV and P. L. VOLODIN, "New Nuclear Materials Including Non-Metallic Fuels", Vol. 1 (International Atomic Energy Agency, Vienna, 1963) p. 225.
- 231. R. E. FRYXELL and B. A. CHANDLER, J. Amer. Ceram. Soc. 47 (1964) 283.
- 232. W. L. BARMORE and R. R. VANDERVOORT, *ibid.* 48 (1965) 499.
- 233. G. G. BENTLE and R. M. KNIEFEL, *ibid.* 48 (1965) 570.
- 234. W. L. BARMORE and R. R. VANDERVOORT, *ibid.* 50 (1967) 316.
- 235. C. F. CLINE, H. W. NEWKIRK, W. L. BARMORE and R. R. VANDERVOORT, *ibid.* 50 (1967) 221.
- 236. D. G. WALKER, W. B. ROTSEY and B. R. A. WOOD, J. Mater. Sci. 6 (1971) 281.
- 237. R. R. VANDERVOORT and W. L. BARMORE, J. Amer. Ceram. Soc. 48 (1965) 587.
- 238. D. N. POLUBOYARINOV, E. YA. SHAPIRO, V. S.

BAKUNOV and F. A. AKOPOV, Inzvest. Akad. Nauk SSSR, Neorg. Materialy 2 (1966) 336.

- 239. K. N. STRAFFORD and H. GARTSIDE, J. Mater. Sci. 4 (1969) 760.
- 240. A. H. CLAUER, M. S. SELTZER and B. A. WILCOX, "Ceramics in Severe Environments", edited by W. W. Kriegel and H. Palmour (Plenum, New York, 1971) p. 361.
- 241. K. VINJAMURI, M. R. NOTIS and D. M. SHAH, Mater. Sci. Eng. 32 (1978) 185.
- 242. H. C. HEARD and S. H. KIRBY, "Mechanical Behavior of Crustal Rocks", edited by N. L. Carter, M. Friedman, J. M. Logan and D. W. Sterns (American Geophysical Union, Washington, D.C., 1981) p. 83.
- 243. G. VAGNARD and J. WASHBURN, J. Amer. Ceram. Soc. 51 (1968) 88.
- 244. I. A. MENZIES and P. ALDRED, J. Electrochem. Soc. 116 (1969) 1414.
- 245. R. D. SCHMIDT-WHITLEY, M. MARTINEZ-CLEMENTE and J. CASTAING, *Phys. Stat. Sol. (a)* 27 (1975) 107.
- 246. H. GERVAIS, B. PELLISSIER and J. CASTAING, Rev. Int. Hautes Temp. et Réfract. 15 (1978) 43.
- 247. D. A. MOORE and S. A. MORROW, Bull. Amer. Ceram. Soc. 59 (1980) 809.
- 248. B. ILSCHNER, B. REPPICH and E. RIECKE, Disc. Faraday Soc. 38 (1964) 243.
- 249. A. G. CROUCH, J. Amer. Ceram. Soc. 55 (1972) 558.
- 250. Idem, Trans. Brit. Ceram. Soc. 72 (1973) 307.
- 251. R. T. PASCOE, ibid. 73 (1974) 143.
- 252. K. A. HAY, A. G. CROUCH and R. T. PASCOE, "Physical Metallurgy of Reactor Fuel Elements", edited by J. E. Harris and E. C. Sykes (The Metals Society, London, 1975) p. 95.
- 253. P. WAGNER and A. R. DRIESNER, J. Appl. Phys. 30 (1959) 148.
- 254. P. WAGNER, A. R. DRIESNER and L. A. HASKIN, *ibid.* **30** (1959) 152.
- 255. W. V. GREEN, Carbon 4 (1966) 81.
- 256. E. G. ZUKAS and W. V. GREEN, *Nature* **212** (1966) 1454.
- 257. W. V. KOTLENSKY, Carbon 4 (1966) 209.
- 258. W. V. GREEN, L. S. LEVINSON, R. D. REISWIG and E. G. ZUKAS, *ibid.* 5 (1967) 583.
- 259. W. V. GREEN and E. G. ZUKAS, *Electrochem. Tech.* 5 (1967) 203.
- 260. D. B. FISCHBACH, Nature 217 (1968) 840.
- 261. E. G. ZUKAS and W. V. GREEN, *Carbon* 6 (1968) 101.
- 262. W. V. GREEN, J. WEERTMAN and E. G. ZUKAS, Mater. Sci. Eng. 6 (1970) 199.
- 263. W. V. GREEN and E. G. ZUKAS, *Nature* **225** (1970) 628.
- 264. E. G. ZUKAS and W. V. GREEN, *Carbon* 9 (1971) 341.
- 265. N. N. DERGUNOV, A. I. KROTOV, V. N. BARA-BANOV and U. P. ANNFRIEV, *ibid.* **10** (1972) 19.
- 266. E. G. ZUKAS and W. V. GREEN, *ibid.* 10 (1972) 519.
- 267. E. G. ZUKAS, J. A. O'ROURKE, P. E. ARM-STRONG and W. V. GREEN, *ibid.* **11** (1973) 317.

- 268. J. P. HIRTH, E. E. HUCKE and R. L. COBLE, *ibid.* 14 (1976) 19.
- 269, V. N. BARABANOV, G. M. VOLKOV and L. I. KNOROZ, Problemy Prochnosti 8 (6) (1976) 88.
- 270. N. S. STOLOFF, D. K. LEZIUS and T. L. JOHNSTON, J. Appl. Phys. 34 (1963) 3315.
- 271. W. R. CANNON and O. D. SHERBY, J. Amer. Ceram. Soc. 53 (1970) 346.
- 272, D. W. BUDWORTH and J. A. PASK, *Trans. Brit. Ceram. Soc.* 62 (1963) 763.
- 273, D. R. CROPPER and T. G. LANGDON, *Phil. Mag.* 18 (1968) 1181.
- 274. T. G. LANGDON, Scripta Metall. 4 (1970) 693.
- 275, J. F. WYGANT, J. Amer. Ceram. Soc. 34 (1951) 374.
- 276. T. VASILOS, J. B. MITCHELL and R. M. SPRIGGS, *ibid.* 47 (1964) 203.
- 277, S. M. COPLEY and J. A. PASK, ibid. 48 (1965) 636.
- 278. E. M. PASSMORE, R. H. DUFF and T. VASILOS, *ibid.* 49 (1966) 594.
- 279. R. B. DAY and R. J. STOKES, ibid. 49 (1966) 345.
- 280. J. R. KREGLO and W. J. SMOTHERS, *ibid.* 50 (1967) 457.
- 281. J. H. HENSLER and G. V. CULLEN, *ibid.* 50 (1967) 584.
- 282. Idem, ibid. 51 (1968) 178.
- 283. Idem, ibid. 51 (1968) 557.
- 284. H. TAGAI and T. ZISNER, ibid. 51 (1968) 303.
- 285. T. ZISNER and H. TAGAI, ibid. 51 (1968) 310.
- 286. T. G. LANGDON and J. A. PASK, Acta Metall. 18 (1970) 505.
- 287. G. R. TERWILLIGER, H. K. BOWEN and R. S. GORDON, J. Amer. Ceram. Soc. 53 (1970) 241.
- 288. P. E. HART and J. A. PASK, ibid. 54 (1971) 315.
- 289. T. G. LANGDON and J. A. PASK, *ibid.* 54 (1971) 240.
- 290. J. B. BILDE-SÖRENSEN, ibid. 55 (1972) 606.
- 291. R. S. GORDON and G. R. TERWILLIGER, *ibid.* 55 (1972) 450.
- 292. E. YASUDA, M. OOTSUKA, S. KIMURA and H. TAGAI, Bull. Tokyo Inst. Tech. 108 (1972) 113.
- 293. A. G. CROUCH, Proc. Brit. Ceram. Soc. 20 (1972) 317.
- 294. M. HURM and B. ESCAIG, J. Physique, Colloque C9 34 (1973) C9-347.
- 295. J. B. BILDE-SÖRENSEN, "Third Nordic High Temperature Symposium", Vol. 1, edited by J. G. Rasmussen (Polyteknisk Forlag, Denmark, 1973) p. 119.
- 296. R. T. TREMPER, R. A. GIDDINGS, J. D. HODGE and R. S. GORDON, *J. Amer. Ceram. Soc.* 57 (1974) 421.
- 297. J. M. BIRCH and B. WILSHIRE, J. Mater. Sci. 9 (1974) 871.
- 298. Idem, Phil. Mag. 30 (1974) 1023.
- 299. Idem, J. Mater. Sci. 9 (1974) 794.
- 300. W. E. SNOWDEN and J. A. PASK, *Phil. Mag.* 29 (1974) 441.
- 301. W. BEERÉ, J. Mater. Sci. 10 (1975) 1434.
- 302. W. E. SNOWDEN and J. A. PASK, J. Amer. Ceram. Soc. 58 (1975) 311.
- 303. P. A. LESSING and R. S. GORDON, "Deformation of Ceramic Materials", edited by R.C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 271.

- 304. J. M. BIRCH, P. J. KING and B. WILSHIRE, J. Mater. Sci. 10 (1975) 175.
- 305. T. G. LANGDON, J. Amer. Ceram. Soc. 58 (1975) 92.
- 306. J. A. COATH, B. WILSHIRE and D. R. F. SPENCER, Trans. J. Brit. Ceram. Soc. 75 (1976) 104.
- 307. J. M. BIRCH, B. WILSHIRE, D. J. R. OWEN and D. SHANTARAM, J. Mater. Sci. 11 (1976) 1817.
- 308. J. D. HODGE, P. A. LESSING and R. S. GORDON, J. Amer. Ceram. Soc. 60 (1977) 318.
- 309. Idem, J. Mater. Sci. 12 (1977) 1598.
- 310. E. YASUDA, H. KIM, S. KIMURA and C. OTA, High Temp. Sci. 9 (1977) 45.
- 311. J. A. COATH and B. WILSHIRE, Ceramurgia Int. 3 (1977) 103.
- 312. J. D. HODGE and R. S. GORDON, *ibid.* 4 (1978) 17.
- 313. J. CRAMPON and B. ESCAIG, J. Mater. Sci. 13 (1978) 2619.
- 314. A. C. SUGARMAN and J. R. BLANCHERE, J. Amer. Ceram. Soc. 62 (1979) 386.
- 315. D. K. SHETTY and R. S. GORDON, J. Mater. Sci. 14 (1979) 2163.
- 316. J. CRAMPON and B. ESCAIG, J. Amer. Ceram. Soc. 63 (1980) 680.
- 317. J. CRAMPON, Acta Metall. 28 (1980) 123.
- 318. J. CRAMPON, "Deformation of Polycrystals: Mechanisms and Microstructures", edited by N. Hansen, A. Horsewell, T. Leffers and H. Lilholt (Risø National Laboratory, Roskilde, Denmark, 1981) p. 247.
- 319. P. J. DIXON-STUBBS and B. WILSHIRE, *Trans. J.* Brit. Ceram. Soc. 80 (1981) 180.
- 320. J. A. COATH and B. WILSHIRE, Ceramurgia Int. 4 (1978) 66.
- 321. W. E. SNOWDEN and J. A. PASK, J. Amer. Ceram. Soc. 61 (1978) 231.
- 322. W. D. KINGERY and E. D. MONTRONE, J. Appl. Phys. 36 (1963) 2412.
- 323. P. LE COMTE, J. Geol. 73 (1965) 469.
- 324. P. M. BURKE, PhD dissertation, Department of Materials Science, Stanford University, Stanford, California (1968).
- 325. H. C. HEARD, "Flow and Fracture of Rocks", edited by H.C. Heard, I. Y. Borg, N. L. Carter and C. B. Raleigh (American Geophysical Union, Washington, D.C., 1972) p. 191.
- 326. S. L. ROBINSON, P. M. BURKE and O. D. SHERBY, *Phil. Mag.* 29 (1974) 423.
- 327. R. K. SINHA and J. R. BLANCHERE, Scripta Metall. 13 (1979) 41.
- 328. Idem, J. Mater. Sci. 15 (1980) 1772.
- 329. A. KELLY and D. J. ROWCLIFFE, J. Amer. Ceram. Soc. 50 (1967) 253.
- 330. S. M. KATS, S. S. ORDAN'YAN, A. I. GRORIN and L. V. KUDRYASHEVA, Problemy Prochnosti 5 (7) (1973) 84.
- 331. V. KRISHNAMACHARI and M. R. NOTIS, Acta Metall. 25 (1977) 1307.
- 332. J. J. PETROVIC, J. Amer. Ceram. Soc. 62 (1979) 188.
- 333. J. J. PETROVIC and C. C. LAND, *ibid.* 63 (1980) 201.

- 334. N. J. OSBORNE, Proc. Brit. Ceram. Soc. 25 (1975) 263.
- 335. R. J. LUMBY, B. NORTH and A. J. TAYLOR, "Special Ceramics", Vol. 6, edited by P. Popper (The British Ceramic Research Association, Stokeon-Trent, UK, 1975) p. 283.
- 336. M. S. SELTZER, Bull. Amer. Ceram. Soc. 56 (1977) 418.
- 337. J. M. BIRCH and B. WILSHIRE, J. Mater. Sci. 13 (1978) 2627.
- 338. B. S. B. KARUNARATNE and M. H. LEWIS, *ibid.* 15 (1980) 449.
- 339. M. H. LEWIS, B. S. B. KARUNARATNE, J. MEREDITH and C. PICKERING, "Creep and Fracture of Engineering Materials and Structures", edited by B. Wilshire and D. R. J. Owen (Pineridge, Swansea, UK, 1981) p. 365.
- 340. P. L. FARNSWORTH and R. L. COBLE, J. Amer. Ceram. Soc. 49 (1966) 264.
- 341. J. C. V. RUMSEY and A. L. ROBERTS, Proc. Brit. Ceram. Soc. 7 (1967) 233.
- 342. T. L. FRANCIS and R. L. COBLE, J. Amer. Ceram. Soc. 51 (1968) 115.
- 343. P. MARSHALL and R. B. JONES, *Powder Met.* 12 (1969) 193.
- 344. V. KRISHNAMACHARI and M. R. NOTIS, *Mater. Sci. Eng.* 27 (1977) 83.
- 345. A. DJEMEL, J. CADOZ and J. PHILIBERT, "Creep and Fracture of Engineering Materials and Structures", edited by B. Wilshire and D. R. J. Owen (Pineridge, Swansea, UK, 1981) p. 381.
- 346. E. GLENNY and T. A. TAYLOR, *Powder Met.* 8 (1961) 164.
- 347. W. ENGEL and F. THÜMMLER, Ber. Deut. Keram. Ges. 50 (1973) 204.
- 348. R. KOSSOWSKY, "Ceramics for High-Performance Applications", edited by J. J. Burke, A. E. Gorum and R. N. Katz (Brook Hill, Chestnut Hill, Massachusetts, 1974) p. 347.
- 349. J. A. MANGELS, *ibid.* p. 195.
- 350. M. E. WASHBURN and H. R. BAUMGARTNER, *ibid.* p. 479.
- 351. K. S. MAZDIYASNI and C. M. COOKE, J. Amer. Ceram. Soc. 57 (1974) 536.
- 352. R. KOSSOWSKY, D. G. MILLER and E. S. DIAZ, *J. Mater. Sci.* **10** (1975) 983.
- 353. S. U. DIN and P. S. NICHOLSON, *ibid.* 10 (1975) 1375.
- 354. Idem, J. Amer. Ceram. Soc. 58 (1975) 500.
- 355. W. ENGEL, F. PORZ and F. THÜMMLER, Ber. Deut. Keram Ges. 52 (1975) 296.
- 356. G. GRATHWOHL and F. THÜMMLER, *ibid.* 52 (1975) 268.
- 357. E. M. LENOE and G. D. QUINN, "Deformation of Ceramic Materials", edited by R.C. Bradt and R.E. Tressler (Plenum, New York, 1975) p. 399.
- 358. F. THÜMMLER, F. PORZ, G. GRATHWOHL and W. ENGEL, "Science of Ceramics", Vol. 8 (The British Ceramic Society, Stoke-on-Trent, UK, 1976) p. 133.
- 359. W. ENGEL, E. GUGEL and F. THÜMMLER, "Science of Ceramics", Vol. 7 (Societé Française de Céramique, Paris, 1976) p. 415.

- 360. J. L. ISKOE, F. F. LANGE and E. S. DIAZ, J. Mater. Sci. 11 (1976) 908.
- 361. G. GRATHWOHL, F. PORZ and F. THÜMMLER, Ber. Deut. Keram. Ges. 53 (1976) 346.
- 362. J. A. MANGELS, "Nitrogen Ceramics", edited by F. L. Riley (Noordhoff, Leyden, The Netherlands, 1977) p. 589.
- 363. J. M. BIRCH, B. WILSHIRE and D. J. GODFREY, *Proc. Brit. Ceram. Soc.* 26 (1978) 141.
- 364. G. GRATHWOHL and F. THÜMMLER, J. Mater. Sci. 13 (1978) 1177.
- 365. G. GRATHWOHL, F. PORZ and F. THÜMMLER, Proc. Brit. Ceram. Soc. 26 (1978) 129.
- 366. P. K. TALTY and R. A. DIRKS, J. Mater. Sci. 13 (1978) 580.
- 367. F. F. LANGE, E. S. DIAZ and C. A. ANDERSSON, Bull. Amer. Ceram. Soc. 58 (1979) 845.
- 368. P. J. DIXON-STUBBS and B. WILSHIRE, J. Mater. Sci. 14 (1979) 2773.
- 369. G. GRATHWOHL and F. THÜMMLER, Ceramurgia Int. 6 (1980) 43.
- 370. F. F. LANGE, B. I. DAVIS and D. R. CLARKE, J. Mater. Sci. 15 (1980) 601.
- 371. F. F. LANGE, D. R. CLARKE and B. I. DAVIS, *ibid.* 15 (1980) 611.
- 372. F. F. LANGE, B. I. DAVIS and D. R. CLARKE, *ibid.* 15 (1980) 616.
- 373. R. M. ARONS and J. K. TIEN, ibid. 15 (1980) 2046.
- 374. J. A. PALM and C. D. GRESKOVICH, Bull. Amer. Ceram. Soc. 59 (1980) 447.
- 375. H. COHRT, G. GRATHWOHL and F. THÜMMLER, Res Mechanica Lett. 1 (1981) 159.
- 376. D. R. CLARKE, "Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems", edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 307.
- 377. J. NEMETH, W. V. YOUDELIS and J. G. PARR, J. Amer. Ceram. Soc. 55 (1972) 125.
- 378. H. A. JOHANSEN and J. G. CLEARY, J. Electrochem. Soc. 113 (1966) 378.
- 379. P. F. BECHER, J. Mater. Sci. 6 (1971) 79.
- 380. C. S. MORGAN and L. L. HALL, Proc. Brit. Ceram. Soc. 6 (1966) 233.
- 381. L. E. POTEAT and C. S. YUST, J. Amer. Ceram. Soc. 49 (1966) 410.
- 382. F. KEIHN and R. KEBLER, J. Less-Common Met. 6 (1964) 484.
- 383. I. SPIVAK, R. A. ANDRIEVSKII, V. N. RYSTOV and V. V. KLIMENKO, *Porosh. Metall.* 7 (139) (1974) 69.
- 384. J. -L. CHERMANT, G. LECLERC and B. L. MOR-DIKE, Z. Metallkde 71 (1980) 465.
- 385. R. CHANG, J. Appl. Phys. 33 (1962) 858.
- 386. J. J. NORREYS and M. J. WHEELER, *Trans. Brit. Ceram. Soc.* **62** (1963) 183.
- 387. J. J. NORREYS, "Carbides in Nuclear Energy", Vol.
 1, edited by L. E. Russell (Macmillan, London, 1964) p. 435.
- 388. S. C. CARNIGLIA, *ibid.* p. 403.
- 389. A. ACCARY, P. MAGNIER and M. MARCHAL, Rev. Hautes Temp. et Réfract. 3 (1966) 59.
- 390. P. MAGNIER, M. MARCHAL and A. ACCARY, Proc. Brit. Ceram. Soc. 7 (1967) 141.
- 391. D. E. STELLRECHT, M. S. FARKAS and D. P.

MOAK, J. Amer. Ceram. Soc. 51 (1968) 455.

- 392. N. M. KILLEY, J. Nucl. Mater. 41 (1971) 178.
- 393. N. M. KILLEY, E. KING and H. J. HEDGER, J. Brit. Nucl. Energy Soc. 10 (1971) 65.
- 394. J. L. ROUTBORT, J. Nucl. Mater. 44 (1972) 24.
- 395. M. S. SELTZER, T. R. WRIGHT and E. O. SPEIDEL, *ibid.* 55 (1975) 327.
- 396. M. S. SELTZER, T. R. WRIGHT and D. P. MOAK, J. Amer. Ceram. Soc. 58 (1975) 138.
- 397. Y. GUERIN, B. AMICE, C.-H. DE NOVION and J.-M. LEFEBVRE, J. Nucl. Mater. 58 (1975) 1.
- 398. B. BURTON, ibid. 68 (1977) 348.
- 399. T. KURASAWA, ibid. 71 (1978) 327.
- 400. T. KURASAWA and T. KIKUCHI, *ibid*. 60 (1976) 330.
- 401. M. TOKAR, J. Amer. Ceram. Soc. 56 (1973) 173.
- 402. M. UCHIDA and M. ICHIKAWA, J. Nucl. Mater. 49 (1973/74) 91.
- 403. R. R. VANDERVOORT, W. L. BARMORE and C. F. CLINE, *Trans. Met. Soc. AIME* 242 (1968) 1466.
- 404. D. BRUCKLACHER and W. DIENST, J. Nucl. Mater. 42 (1972) 285.
- 405. R. SCOTT, A. R. HALL and J. WILLIAMS, *ibid.* 1 (1959) 39.
- 406. W. M. ARMSTRONG, W. R. IRVINE and R. H. MARTINSON, *ibid.* 7 (1962) 133.
- 407. W. M. ARMSTRONG and W. R. IRVINE, *ibid.* 9 (1963) 121.
- 408. Idem, ibid. 12 (1964) 261.
- 409. R. A. WOLFE and S. F. KAUFMAN, Rprt. No. WAPD-TM-587, (Bettis Atomic Power Laboratory, Pittsburgh, Pennsylvania, 1967).
- 410. J. F. BYRON, J. Nucl. Mater. 27 (1968) 48.
- 411. P. E. BOHABOY, R. R. ASAMOTO and A. E. CONTI, Rprt. No. GEAP-10054 (General Electric Breeder Reactor Development Operation, Sunnyvale, California, 1969).
- 412. P. E. BOHABOY and S. K. EVANS, "Plutonium 1970 and Other Actinides", edited by W. N. Miner (The Metallurgical Society of AIME, New York, 1970) p. 479.
- 413. J. A. C. MARPLES and A. HOUGH, *ibid.* p. 497.
- 414. M. S. SELTZER, A. H. CLAUER and B. A. WILCOX, J. Nucl. Mater. 34 (1970) 351.
- 415. R. F. CANON, J. T. A. ROBERTS and R. J. BEALS, J. Amer. Ceram. Soc. 54 (1971) 105.
- 416. J. T. A. ROBERTS, J. Nucl. Mater. 38 (1971) 35.
- 417. J. S. PERRIN, *ibid.* **39** (1971) 175.
- 418. J. T. A. ROBERTS and B. J. WRONA, *ibid.* 41 (1971) 23.
- 419. T. G. LANGDON, ibid. 38 (1971) 88.
- 420. M. S. SELTZER, A. H. CLAUER and B. A. WILCOX, *ibid.* 44 (1972) 331.
- 421. J. T. A. ROBERTS and Y. UEDA, J. Amer. Ceram. Soc. 55 (1972) 117.
- 422. B. BURTON and G. L. REYNOLDS, Acta Metall. 21 (1973) 1073.
- 423. B. BURTON, G. L. REYNOLDS and J. P. BARNES, J. Mater. Sci. 8 (1973) 1690.
- 424. B. BURTON and G. L. REYNOLDS, Acta. Metall. 21 (1973) 1641.
- 425. A. A. SOLOMON, J. Amer. Ceram. Soc. 56 (1973)

164.

- 426, J. T. A. ROBERTS, Acta Metall. 22 (1974) 873.
- 427. B. BURTON and G. L. REYNOLDS, *Phil. Mag.* 29 (1974) 1359.
- 428. A. A. SOLOMON, "Deformation of Ceramic Materials", edited by R. C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 313.
- 429. G. L. REYNOLDS, B. BURTON and M. V. SPEIGHT, Acta Metall. 23 (1975) 573.
- 430. B. BURTON and G. L. REYNOLDS, "Physical Metallurgy of Reactor Fuel Elements", edited by J. E. Harris and E. C. Sykes (The Metals Society, London, 1975) p. 87.
- 431. K. C. RADFORD and G. R. TERWILLIGER, J. Amer. Ceram. Soc. 58 (1975) 274.
- 432. B. BURTON, "Thermodynamics of Nuclear Materials 1974", Vol. 1 (The International Atomic Energy Agency, Vienna, 1975) p. 415.
- 433. N. A. JAVED, ibid. p. 435.
- 434. H. ASSMANN, "Plutonium 1975 and Other Actinides", edited by H. Blank and R. Lindner (North-Holland, Amsterdam, 1976) p. 833.
- 435. R. N. SINGH, "Proceedings of the Second International Conference on Mechanical Behavior of Materials" (American Society for Metals, Metals Park, Ohio, 1976) p. 388.
- 436. T. E. CHUNG and T. J. DAVIES, Acta Metall. 27 (1979) 627.
- 437. Idem, J. Nucl. Mater. 79 (1979) 143.
- 438. Idem, "Creep and Fracture of Engineering Materials and Structures", edited by B. Wilshire and D. R. J. Owen (Pineridge, Swansea, UK, 1981) p. 395.
- 439. J. B. AINSCOUGH, F. RIGBY and S. A. MORROW, J. Amer. Ceram. Soc. 64 (1981) 315.
- 440. P. T. SAWBRIDGE, G. L. REYNOLDS and B. BURTON, "Plutonium 1970 and Other Actinides", edited by W. N. Miner (The Metallurgical Society of AIME, New York, 1970) p. 488.
- 441. M. D. HOUSTON, O. L. KRUGER and W. M. PARDUE, Nuclear Metall. 17 (1970) 488.
- 442. J. S. PERRIN, J. Nucl. Mater. 42 (1972) 101.
- 443. J. L. ROUTBORT, N. A. JAVED and J. C. VOGLEWEDE, *ibid.* 44 (1972) 247.
- 444. J. L. ROUTBORT and J. C. VOGLEWEDE, J. Amer. Ceram. Soc. 56 (1973) 330.
- 445. D. BRUCKLACHER, "Physical Metallurgy of Reactor Fuel Elements", edited by J. E. Harris and E. C. Sykes (The Metals Society, London, 1975) p. 118.
- 446. W. DIENST, J. Nucl. Mater. 61 (1976) 185.
- 447. F. UEDA, H. DOI, F. FUJIWARA, H. MASATOMI and Y. OOSAWA, Trans. Japan Inst. Met. 16 (1975) 591.
- 448. H. DOI, F. UEDA, Y. FUJIWARA and H. MASATOMI, "Grain Boundaries in Engineering Materials", edited by J. L. Walter, J. H. Westbrook and D. A. Woodford (Claitor's, Baton Rouge, Louisiana, 1975) p. 235.
- 449. F. UEDA, H. DOI, F. FUJIWARA and H. MASATOMI, Trans. Japan Inst. Met. 18 (1977) 247.
- 450. M. H. LEIPOLD and T. H. NIELSEN, J. Amer. Ceram. Soc. 47 (1964) 419.

- 451. P. V. ZUBAREV and L. N. DEMENT'YEV, Problemy Prochnosti 3 (9) (1971) 47.
- 452. YU. V. MILOSERDIN, K. V. NABOICHENKO, L. I. LAVEIKIN and A. G. BORTSOV, *ibid.* **4** (3) (1972) 50.
- 453. L. N. DEMENT'YEV, P. V. ZUBAREV, L. B. NEZHEVENKO and V. I. GROSHEV, Fiz. Metal. Metalloved. 39 (1975) 578.
- 454. R. DAROLIA and T. F. ARCHBOLD, Scripta Metall. 10 (1976) 251.
- 455. Idem, J. Mater. Sci. 11 (1976) 283.
- 456. P. V. ZUBAREV and A. G. SHMELEV, Problemy Prochnosti 12 (2) (1980) 18.
- 457. Idem, ibid. 12 (3) (1980) 8.
- 458. A. I. AVGUSTINIK, S. M. KATS, S. S. ORDAN' YAN, A. I. GORIN and L. V. KUDRYASHEVA, *Izvest. Akad. Nauk SSSR, Neorg. Materialy* 8 (1972) 1417.
- 459. P. E. EVANS, J. Amer. Ceram. Soc. 53 (1970) 365.
- 460. L. L. FEHRENBACHER, F. P. BAILEY and N. A. McKINNON, *SAMPE Q.* 2 (3) (1971) 48.
- 461. R. G. ST-JACQUES and R. ANGERS, J. Amer. Ceram. Soc. 55 (1972) 571.
- 462. Idem, Trans. Brit. Ceram. Soc. 72 (1973) 285.
- 463. M. S. SELTZER and P. K. TALTY, J. Amer. Ceram. Soc. 58 (1975) 124.
- 464. Idem, "Deformation of Ceramic Materials", edited by R.C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 297.
- 465. I. I. VISHNEVSKII, E. I. AKSEL'ROD, N. D. TAL' YANSKAYA and L. S. ALEKSEENKO, *Fiz. Tverd. Tela* 16 (1974) 1530.

References

- 1. P. PHILLIPS, Proc. Phys. Soc. 19 (1903-05) 491.
- 2. E. N. DA C. ANDRADE, Proc. Roy. Soc. A84 (1910)
- 1. 3. Idem, ibid. A90 (1914) 329.
- 4. D. T. GRIGGS, J. Geol. 44 (1936) 541.
- 5. Idem, ibid. 47 (1939) 225.
- 6. E. REUSCH, Ann. Phys. Chemie Poggendorfs 132 (1867) 441.
- O. MÜGGE, Neues Jahrb. Mineral., Geol. Palaeontol. Monatsch. 1 (1898) 71.
- 8. J. B. WACHTMAN and L. H. MAXWELL, J. Amer. Ceram. Soc. 37 (1954) 291.
- 9. J. A. STAVROLAKIS and F. H. NORTON, *ibid*. 33 (1950) 263.
- R. L. COBLE and W. D. KINGERY, *ibid.* 39 (1956) 377.
- 11. R. W. CHRISTY, Acta Metall. 2 (1954) 284.
- 12. Idem, ibid. 4 (1956) 441.
- P. M. BURKE and O. D. SHERBY, Progress Report on NASA Research Grant SC-NGR-05-020-084, Stanford University, Stanford, California (1967).
- 14. D. R. CROPPER and T. G. LANGDON, *Phil. Mag.* 18 (1968) 1181.
- J. H. GITTUS, "Creep, Viscoelasticity and Creep Fracture in Solids" (Wiley, New York, 1975) p. 134.
- J. P. POIRIER, "Plasticité à Haute Température des Solides Cristallins" (Eyrolles, Paris, 1976) p. 262.
- 17. B. BURTON, "Diffusional Creep in Polycrystalline

Materials" (Trans Tech, Aedermannsdorf, Switzerland, 1977) p. 24.

- W. D. KINGERY, H. K. BOWEN and D. R. UHLMANN, "Introduction to Ceramics" (Wiley, New York, 1976) p. 704.
- R. W. DAVIDGE, "Mechanical Behaviour of Ceramics" (Cambridge University Press, Cambridge, 1979) p. 64.
- 20. A. G. EVANS and T. G. LANGDON, *Prog. Mater.* Sci. 21 (1976) 171.
- B. WILSHIRE, "Creep of Engineering Materials", edited by C. D. Pomeroy (The Institution of Mechanical Engineers, London, 1978) p. 67.
- 22. T. BRETHEAU, J. CASTAING, J. RABIER and P. VEYSSIÈRE, Adv. Phys. 28 (1979) 829.
- 23. F. THÜMMLER and G. GRATHWOHL, AGARD Report No. 651 (1976).
- 24. M. S. SELTZER, J. S. PERRIN, A. H. CLAUER and B. A. WILCOX, *Reactor Tech.* **14** (1971) 99.
- 25. S. TAKEUCHI and A. S. ARGON, J. Mater. Sci. 11 (1976) 1542.
- 26. S. H. KIRBY and C. B. RALEIGH, *Tectonophys.* 19 (1973) 165.
- 27. N. L. CARTER, Rev. Geophys. Space Phys. 14 (1976) 301.
- A. NICOLAS and J. P. POIRIER, "Crystalline Plasticity and Solid State Flow in Metamorphic Rocks" (Wiley, London, 1976) p. 171.
- 29. R. F. FIRESTONE and A. H. HEUER, J. Amer. Ceram. Soc. 59 (1976) 24.
- T. G. LANGDON, "Deformation of Ceramic Materials", edited by R. C. Bradt and R. E. Tressler (Plenum Press, New York, 1975) p. 101.
- 31. J. WEERTMAN, J. Appl. Phys. 28 (1957) 362.
- 32. Idem, Trans. ASM 61 (1968) 681.
- 33. J. WEERTMAN, "Rate Processes in Plastic Deformation of Materials", edited by J. C. M. Li and A. K. Mukherjee (American Society for Metals, Metals Park, Ohio, 1975) p. 315.
- 34. J. WEERTMAN, J. Appl. Phys. 28 (1957) 1185.
- R. CHANG, "Physics and Chemistry of Ceramics", edited by C. Klingsberg (Gordon and Breach, New York, 1963) p. 275.
- 36. F. R. N. NABARRO, Phil. Mag. 16 (1967) 231.
- 37. S. L. ROBINSON and O. D. SHERBY, Acta Metall. 17 (1969) 109.
- 38. C. R. BARRETT and W. D. NIX, *ibid.* 13 (1965) 1247.
- J. FRIEDEL, "Dislocations" (Pergamon Press, Oxford, 1964) p. 312.
- 40. L. I. IVANOV and V. A. YANUSHKEVICH, Fiz. Met. Metalloved. 17 (1964) 112.
- 41. W. BLUM, Phys. Stat. Sol. (b) 45 (1971) 561.
- 42. R. LAGNEBORG, Met. Sci. J. 3 (1969) 161.
- 43. Idem, ibid. 6 (1972) 127.
- 44. P. ÖSTRÖM and R. LAGNEBORG, J. Eng. Mater. Tech. 98 (1976) 114.
- 45. J. H. GITTUS, Acta Metall. 22 (1974) 789.
- 46. H. E. EVANS and G. KNOWLES, Acta Metall. 25 (1977) 963.
- 47. J. P. POIRIER, Rev. Phys. Appl. 11 (1976) 731.
- 48. H. E. EVANS and G. KNOWLES, Acta Metall. 26 (1978) 141.

- 49. J. E. BIRD, A. K. MUKHERJEE and J. E. DORN, "Quantitative Relation Between Properties and Microstructure", edited by D. G. Brandon and A. Rosen (Israel Universities Press, Jerusalem, 1969) p. 255.
- 50. P. YAVARI, F. A. MOHAMED and T. G. LANGDON, Acta Metall. 29 (1981) 1495.
- 51. F. R. N. NABARRO, "Report of a Conference on Strength of Solids" (The Physical Society, London, 1948) p. 75.
- 52. C. HERRING, J. Appl. Phys. 21 (1950) 437.
- 53. M. F. ASHBY, Scripta Metall. 3 (1969) 837.
- 54. G. W. GREENWOOD, *ibid.* 4 (1970) 171.
- 55. B. BURTON, Mater. Sci. Eng. 10 (1972) 9.
- 56. R. L. COBLE, J. Appl. Phys. 34 (1963) 1679.
- 57. F. W. CROSSMAN and M. F. ASHBY, Acta Metall. 23 (1975) 425.
- 58. E. OROWAN, J. West Scotland Iron Steel Inst. 54 (1947) 45.
- 59. T. G. LANGDON, Phil. Mag. 22 (1970) 689.
- 60. R. C. GIFKINS, J. Australian Inst. Met. 18 (1973) 137.
- 61. T. G. LANGDON and R. B. VASTAVA, "Mechanical Testing for Deformation Model Development", edited by R. W. Rohde and J. C. Swearengen, ASTM STP 765 (American Society for Testing and Materials, Philadelphia, 1982) p. 435.
- 62. W. R. CANNON, Phil. Mag. 25 (1972) 1489.
- 63. I. M. LIFSHITZ, Sov. Phys. JETP 17 (1963) 909.
- 64. W. A. RACHINGER, J. Inst. Met. 81 (1952-53) 33.
- 65. W. R. CANNON and W. D. NIX, *Phil. Mag.* 27 (1973) 9.
- 66. R. RAJ and M. F. ASHBY, Met. Trans. 2 (1971) 1113.
- 67. R. C. GIFKINS, T. G. LANGDON and D. McLEAN, Met. Sci. 9 (1975) 141.

- 68. M. V. SPEIGHT, Scripta Metall. 10 (1976) 163.
- 69. G. B. GIBBS, Met. Sci. 11 (1977) 65.
- 70. R. S. GORDON, J. Amer. Ceram. Soc. 56 (1973) 147.
- 71. R. S. GORDON, "Mass Transport Phenomena in Ceramics", edited by A. R. Cooper and A. H. Heuer (Plenum Press, New York, 1975) p. 445.
- 72. R. S. GORDON and J. D. HODGE, J. Mater. Sci. 10 (1975) 200.
- 73. D. R. CLARKE and G. THOMAS, J. Amer. Ceram. Soc. 60 (1977) 491.
- 74. L. K. V. LOU, T. E. MITCHELL and A. H. HEUER, *ibid.* 61 (1978) 392.
- 75. O. L. KRIVANEK, T. M. SHAW and G. THOMAS, *ibid.* 62 (1979) 585.
- 76. R. L. TSAI and R. RAJ, *ibid.* 63 (1980) 513.
- 77. D. R. CLARKE, "Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems", edited by J. A. Pask and A. G. Evans (Plenum Press, New York, 1981) p. 307.
- 78. J. M. BIRCH, B. WILSHIRE and D. J. GODFREY, Proc. Brit. Ceram. Soc. 26 (1978) 141.
- 79. A. G. EVANS and A. RANA, *Acta Metall.* 28 (1980) 129.
- R. RAJ and P. E. D. MORGAN, J. Amer. Ceram. Soc. 64 (1981) C-143.
- 81. A. VENKATESWARAN and D. P. H. HASSELMAN, J. Mater. Sci. 16 (1981) 1627.
- 82. D. P. H. HASSELMAN, A. VENKATESWARAN and C. SHIH, "Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems", edited by J. A. Pask and A. G. Evans (Plenum Press, New York, 1981) p. 271.

Received 11 May and accepted 24 May 1982